Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

Overview

CMaskTrack R-CNN for OVIS

This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation dataset described in the tech report:

Occluded Video Instance Segmentation

Jiyang Qi1,2*, Yan Gao2*, Yao Hu2, Xinggang Wang1, Xiaoyu Liu2,
Xiang Bai1, Serge Belongie3, Alan Yuille4, Philip Torr5, Song Bai2,5 📧
1Huazhong University of Science and Technology 2Alibaba Group 3University of Copenhagen
4Johns Hopkins University 5University of Oxford

In this work, we collect a large-scale dataset called OVIS for Occluded Video Instance Segmentation. OVIS consists of 296k high-quality instance masks from 25 semantic categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances by contextual reasoning and association, our experiments suggest that current video understanding systems cannot, which reveals that we are still at a nascent stage for understanding objects, instances, and videos in a real-world scenario.

We also present a simple plug-and-play module that performs temporal feature calibration to complement missing object cues caused by occlusion.

Some annotation examples can be seen below:

2592056 2930398 2932104 3021160

For more details about the dataset, please refer to our paper or website.

Model training and evaluation

Installation

This repo is built based on MaskTrackRCNN. A customized COCO API for the OVIS dataset is also provided.

You can use following commands to create conda env with all dependencies.

conda create -n cmtrcnn python=3.6 -y
conda activate cmtrcnn

conda install -c pytorch pytorch=1.3.1 torchvision=0.2.2 cudatoolkit=10.1 -y
pip install -r requirements.txt
pip install git+https://github.com/qjy981010/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"

bash compile.sh

Data preparation

  1. Download OVIS from our website.
  2. Symlink the train/validation dataset to data/OVIS/ folder. Put COCO-style annotations under data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── OVIS
│   │   ├── train_images
│   │   ├── valid_images
│   │   ├── annotations
│   │   │   ├── annotations_train.json
│   │   │   ├── annotations_valid.json

Training

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on OVIS based on a MSCOCO pretrained checkpoint (mmlab link or google drive).

Run the command below to train the model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py --work_dir ./workdir/cmasktrack_rcnn_r50_fpn_1x_ovis --gpus 4

For reference to arguments such as learning rate and model parameters, please refer to configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py.

Evaluation

Our pretrained model is available for download at Google Drive (comming soon). Run the following command to evaluate the model on OVIS.

CUDA_VISIBLE_DEVICES=0 python test_video.py configs/cmasktrack_rcnn_r50_fpn_1x_ovis.py [MODEL_PATH] --out [OUTPUT_PATH.pkl] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.pkl.json. OVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license, while the correlation ops is under MIT license.

Acknowledgement

This project is based on mmdetection (commit hash f3a939f), mmcv, MaskTrackRCNN and Pytorch-Correlation-extension. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star and citation 📝 :

@article{qi2021occluded,
    title={Occluded Video Instance Segmentation},
    author={Jiyang Qi and Yan Gao and Yao Hu and Xinggang Wang and Xiaoyu Liu and Xiang Bai and Serge Belongie and Alan Yuille and Philip Torr and Song Bai},
    journal={arXiv preprint arXiv:2102.01558},
    year={2021},
}
Owner
Q . J . Y
A coder from hust
Q . J . Y
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022