Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Overview

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021)

img

Project page | Paper | Colab | Colab for Drawing App

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes.
Dmytro Kotovenko*, Matthias Wright*, Arthur Heimbrecht, and Björn Ommer.
* denotes equal contribution

Implementations

We provide implementations in Tensorflow 1 and Tensorflow 2. In order to reproduce the results from the paper, we recommend the Tensorflow 1 implementation.

Installation

  1. Clone this repository:
    > git clone https://github.com/CompVis/brushstroke-parameterized-style-transfer
    > cd brushstroke-parameterized-style-transfer
  2. Install Tensorflow 1.14 (preferably with GPU support).
    If you are using Conda, this command will create a new environment and install Tensorflow as well as compatible CUDA and cuDNN versions.
    > conda create --name tf14 tensorflow-gpu==1.14
    > conda activate tf14
  3. Install requirements:
    > pip install -r requirements.txt

Basic Usage

from PIL import Image
import model

content_img = Image.open('images/content/golden_gate.jpg')
style_img = Image.open('images/style/van_gogh_starry_night.jpg')

stylized_img = model.stylize(content_img,
                             style_img,
                             num_strokes=5000,
                             num_steps=100,
                             content_weight=1.0,
                             style_weight=3.0,
                             num_steps_pixel=1000)

stylized_img.save('images/stylized.jpg')

or open Colab.

Drawing App

We created a Streamlit app where you can draw curves to control the flow of brushstrokes.

img

Run drawing app on your machine

To run the app on your own machine:

> CUDA_VISIBLE_DEVICES=0 streamlit run app.py

You can also run the app on a remote server and forward the port to your local machine: https://docs.streamlit.io/en/0.66.0/tutorial/run_streamlit_remotely.html

Run streamlit app from Colab

If you don't have access to GPUs we also created a Colab from which you can start the drawing app.

Other implementations

PyTorch implementation by justanhduc.

Citation

@article{kotovenko_cvpr_2021,
    title={Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes},
    author={Dmytro Kotovenko and Matthias Wright and Arthur Heimbrecht and Bj{\"o}rn Ommer},
    journal={CVPR},
    year={2021}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022