Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

Overview

BI-RADS BERT

Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

This implementation could be used on other radiology in house corpus as well. Labelling your own data should take the same form as reports and dataframes in './mockdata'.

Conda Environment setup

This project was developed using conda environments. To build the conda environment use the line of code below from the command line

conda create --name NLPenv --file requirements.txt --channel default --channel conda-forge --channel huggingface --channel pytorch

Dataset Organization

Two datasets are needed to build BERT embeddings and fine tuned Field Extractors. 1. dataframe of SQL data, 2. labeled data for field extraction.

Dataframe of SQL data: example file './mock_data/sql_dataframe.csv'. This file was efficiently made by producing a spreadsheet of all entries in the sql table and saving them as a csv file. It will require that each line of the report be split and coordinated with a SequenceNumber column to combine all the reports. Then continue to the 'How to Run BERT Pretraining' Section.

Labeled data for Field Extraction: example of files in './mock_data/labaled_data'. Exach txt file is a save dict object with fields:

example = {
    'original_report': original text report unprocessed from the exam_dataframe.csv, 
    'sectionized': dict example of the report in sections, ex. {'Title': '...', 'Hx': '...', ...}
    'PID': patient identification number,
    'date': date of the exam,
    'field_name1': name of a field you wish to classify, vlaue is the label, 
    'field_name2': more labeled fields are an option, 
    ...
}

How to Run BERT Pretraining

Step 1: SQLtoDataFrame.py

This script can be ran to convert SQL data from a hospital records system to a dataframe for all exams. Hospital records keep each individual report line as a separate SQL entry, so by using 'SequenceNumber' we can assemble them in order.

python ./examples/SQLtoDataFrame.py 
--input_sql ./mock_data/sql_dataframe.csv 
--save_name /folder/to/save/exam_dataframe/save_file.csv

This will output an 'exam_dataframe.csv' file that can be used in the next step.

Step 2: TextPreProcessingBERTModel.py

This script is ran to convert the exam_dataframe.csv file into a pre_training text file for training and validation, with a vocabulary size. An example of the output can be found in './mock_data/pre_training_data'.

python ./examples/TextPreProcessingBERTModel.py 
--dfolder /folder/that/contains/exam_dataframe 
--ft_folder ./mock_data/labeled_data

Step 3: MLM_Training_transformers.py

This script will now run the BERT pre training with masked language modeling. The Output directory (--output_dir) used is required to be empty; eitherwise the parser parameter --overwrite_output_dir is required to overwrite the files in the output directory.

python ./examples/MLM_Training_transformers.py 
--train_data_file ./mock_data/pre_training_data/VocabOf39_PreTraining_training.txt 
--output_dir /folder/to/save/bert/model
--do_eval 
--eval_data_file ./mock_data/pre_training_data/PreTraining_validation.txt 

How to Run BERT Fine Tuning

--pre_trained_model parsed arugment that can be used for all the follwing scripts to load a pre trained embedding. The default is bert-base-uncased. To get BioClinical BERT use --pre_trained_model emilyalsentzer/Bio_ClinicalBERT.

Step 4: BERTFineTuningSectionTokenization.py

This script will run fine tuning to train a section tokenizer with the option of using auxiliary data.

python ./examples/BERTFineTuningSectionTokenization.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/section_tokenizer

Optional parser arguements:

--aux_data If used then the Section Tokenizer will be trained with the auxilliary data.

--k_fold If used then the experiment is run with a 5 fold cross validation.

Step 5: BERTFineTuningFieldExtractionWoutSectionization.py

This script will run fine tuning training of field extraction without section tokenization.

python ./examples/BERTFineTuningFieldExtractionWoutSectionization.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/field_extractor_WoutST
--field_name Modality

field_name is a required parsed arguement.

Optional parser arguements:

--k_fold If used then the experiment is run with a 5 fold cross validation.

Step 6: BERTFineTuningFieldExtraction.py

This script will run fine tuning training of field extraction with section tokenization.

python ./examples/BERTFineTuningFieldExtraction.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/field_extractor
--field_name Modality
--report_section Title

field_name and report_section is a required parsed arguement.

Optional parser arguements:

--k_fold If used then the experiment is run with a 5 fold cross validation.

Additional Codes

post_ExperimentSummary.py

This code can be used to run statistical analysis of test results that are produced from BERTFineTuning codes.

To determine the best final model, we performed statistical significance testing with a 95% confidence. We used the Mann-Whitney U test to compare the medians of different section tokenizers as the distribution of accuracy and G.F1 performance is skewed to the left (medians closer to 100%). For the field extraction classifiers, we used the McNemar test to compare the agreement between two classifiers. The McNemar test was chosen because it has been robustly proven to have an acceptable probability of Type I errors (not detecting a difference between two classifiers when there is a difference). After evaluating both configurations of field extraction explored in this paper, we performed another McNemar test to assist in choosing the best technique. All statistical tests were performed with p-value adjustments for multiple comparisons testing with Bonferonni correction.

Note: input folder must contain 2 or more .xlsx files of experiemtnal results to perform a statistical test.

python ./examples/post_ExperimentSummary.py --folder /folder/where/xlsx/files/are/located --stat_test MannWhitney

--stat_test options: 'MannWhitney' and 'McNemar'.

'MannWhitney': MannWhitney U-Test. This test was used for the Section Tokenizer experimental results comparing the results from different models. https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

'McNemar' : McNemar's test. This test was used for the Field Extraction experimental results comparing the results from different models. https://en.wikipedia.org/wiki/McNemar%27s_test

Contact

Please post a Github issue if you have any questions.

public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
Example-custom-ml-block-keras - Custom Keras ML block example for Edge Impulse

Custom Keras ML block example for Edge Impulse This repository is an example on

Edge Impulse 8 Nov 02, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022