Nest - A flexible tool for building and sharing deep learning modules

Overview

Nest - A flexible tool for building and sharing deep learning modules

Nest is a flexible deep learning module manager, which aims at encouraging code reuse and sharing. It ships with a bunch of useful features, such as CLI based module management, runtime checking, and experimental task runner, etc. You can integrate Nest with PyTorch, Tensorflow, MXNet, or any deep learning framework you like that provides a python interface.

Moreover, a set of Pytorch-backend Nest modules, e.g., network trainer, data loader, optimizer, dataset, visdom logging, are already provided. More modules and framework support will be added later.


Prerequisites

  • System (tested on Ubuntu 14.04LTS, Win10, and MacOS High Sierra)
  • Python >= 3.5.4
  • Git

Installation

# directly install via pip
pip install git+https://github.com/ZhouYanzhao/Nest.git

# manually download and install
git clone https://github.com/ZhouYanzhao/Nest.git
pip install ./Nest

Basic Usage

The official website and documentation are under construction.

Create your first Nest module

  1. Create "hello.py" under your current path with the following content:

    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def hello_nest(name: str) -> str:
        """My first Nest module!"""
    
        return 'Hello ' + name

    Note that the type of module parameters and return values must be clearly defined. This helps the user to better understand the module, and at runtime Nest automatically checks whether each module receives and outputs as expected, thus helping you to identify potential bugs earlier.

  2. Execute the following command in your shell to verify the module:

    str # Documentation: # My first Nest module! # author: Yanzhao # module_path: /Users/yanzhao/Workspace/Nest.doc # version: 1.0.0 ">
    $ nest module list -v
    # Output:
    # 
    # 1 Nest module found.
    # [0] main.hello_nest (1.0.0) by "Yanzhao":
    #     hello_nest(
    #         name:str) -> str
    
    # Documentation:
    #     My first Nest module!
    #     author: Yanzhao
    #     module_path: /Users/yanzhao/Workspace/Nest.doc
    #     version: 1.0.0 

    Note that all modules under current path are registered under the "main" namespace.

    With the CLI tool, you can easily manage Nest modules. Execute nest -h for more details.

  3. That's it. You just created a simple Nest module!

Use your Nest module in Python

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >> modules.hello_nest('Yanzhao', wrong=True) # Output: # # Unexpected param(s) "wrong" for Nest module: # hello_nest( # name:str) -> str ">
    >>> from nest import modules
    >>> print(modules.hello_nest) # access the module
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['*_nes?']) # wildcard search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> print(modules['r/main.\w+_nest']) # regex search
    # Output:
    # 
    # hello_nest(
    # name:str) -> str
    >>> modules.hello_nest('Yanzhao') # use the module
    # Output:
    #
    # 'Hello Yanzhao'
    >>> modules.hello_nest(123) # runtime type checking
    # Output:
    #
    # TypeError: The param "name" of Nest module "hello_nest" should be type of "str". Got "123".
    >>> modules.hello_nest('Yanzhao', wrong=True)
    # Output:
    #
    # Unexpected param(s) "wrong" for Nest module:
    # hello_nest(
    # name:str) -> str

    Note that Nest automatically imports modules and checks them as they are used to make sure everything is as expected.

  2. You can also directly import modules like this:

    >>> from nest.main.hello import hello_nest
    >>> hello_nest('World')
    # Output:
    #
    # 'Hello World'

    The import syntax is from nest. . import

  3. Access to Nest modules through code is flexible and easy.

Debug your Nest modules

  1. Open an interactive python interpreter under the same path of "hello.py" and run following commands:

    >>> from nest import modules
    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Hello Yanzhao'
  2. Keep the interpreter OPEN and use an externel editor to modify the "hello.py":

    # change Line7 from "return 'Hello ' + name" to
    return 'Nice to meet you, ' + name
  3. Back to the interpreter and rerun the same command:

    >>> modules.hello_nest('Yanzhao')
    # Output:
    #
    # 'Nice to meet you, Yanzhao'

    Note that Nest detects source file modifications and automatically reloads the module.

  4. You can use this feature to develop and debug your Nest modules efficiently.

Install Nest modules from local path

  1. Create a folder my_namespace and move the hello.py into it:

    $ mkdir my_namespace
    $ mv hello.py ./my_namespace/
  2. Create a new file more.py under the folder my_namespace with the following content:

    float: """Multiply two numbers.""" return a * b ">
    from nest import register
    
    @register(author='Yanzhao', version='1.0.0')
    def sum(a: int, b: int) -> int:
        """Sum two numbers."""
    
        return a + b
    
    # There is no need to repeatedly declare meta information
    # as modules within the same file automatically reuse the 
    # previous information. But overriding is also supported.
    @register(version='2.0.0')
    def mul(a: float, b: float) -> float:
        """Multiply two numbers."""
        
        return a * b

    Now we have:

    current path/
    ├── my_namespace/
    │   ├── hello.py
    │   ├── more.py
    
  3. Run the following command in the shell:

    Search paths. Continue? (Y/n) [Press ] ">
    $ nest module install ./my_namespace hello_word
    # Output:
    #
    # Install "./my_namespace/" -> Search paths. Continue? (Y/n) [Press 
          
           ]
          

    This command will add "my_namespace" folder to Nest's search path, and register all Nest modules in it under the namespace "hello_word". If the last argument is omitted, the directory name, "my_namespace" in this case, is used as the namespace.

  4. Verify the installation via CLI:

    $ nest module list
    # Output:
    #
    # 3 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)

    Note that those Nest modules can now be accessed regardless of your working path.

  5. Verify the installation via Python interpreter:

    $ ipython # open IPython interpreter
    >>> from nest import modules
    >>> print(len(modules))
    # Output:
    #
    # 3
    >>> modules.[Press <Tab>] # IPython Auto-completion
    # Output:
    #
    # hello_nest
    # mul
    # sum
    >>> modules.sum(3, 2)
    # Output:
    #
    # 5
    >>> modules.mul(2.5, 4.0)
    # Output:
    #
    # 10.0
  6. Thanks to the auto-import feature of Nest, you can easily share modules between different local projects.

Install Nest modules from URL

  1. You can use the CLI tool to install modules from URL:

    # select one of the following commands to execute
    # 0. install from Github repo via short URL (GitLab, Bitbucket are also supported)
    $ nest module install [email protected]/Nest:pytorch pytorch
    # 1. install from Git repo
    $ nest module install "-b pytorch https://github.com/ZhouYanzhao/Nest.git" pytorch
    # 2. install from zip file URL
    $ nest module install "https://github.com/ZhouYanzhao/Nest/archive/pytorch.zip" pytorch

    The last optional argument is used to specify the namespace, "pytorch" in this case.

  2. Verify the installation:

    $ nest module list
    # Output:
    #
    # 26 Nest modules found.
    # [0] hello_world.hello_nest (1.0.0)
    # [1] hello_world.mul (2.0.0)
    # [2] hello_world.sum (1.0.0)
    # [3] pytorch.adadelta_optimizer (0.1.0)
    # [4] pytorch.checkpoint (0.1.0)
    # [5] pytorch.cross_entropy_loss (0.1.0)
    # [6] pytorch.fetch_data (0.1.0)
    # [7] pytorch.finetune (0.1.0)
    # [8] pytorch.image_transform (0.1.0)
    # ...

Uninstall Nest modules

  1. You can remove modules from Nest's search path by executing:

    # given namespace
    $ nest module remove hello_world
    # given path to the namespace
    $ nest module remove ./my_namespace/
  2. You can also delete the corresponding files by appending a --delete or -d flag:

    $ nest module remove hello_world --delete

Version control Nest modules

  1. When installing modules, Nest adds the namespace to its search path without modifying or moving the original files. So you can use any version control system you like, e.g., Git, to manage modules. For example:

    $ cd <path of the namespace>
    # update modules
    $ git pull
    # specify version
    $ git checkout v1.0
  2. When developing a Nest module, it is recommended to define meta information for the module, such as the author, version, requirements, etc. Those information will be used by Nest's CLI tool. There are two ways to set meta information:

    • define meta information in code
    from nest import register
    
    @register(author='Yanzhao', version='1.0')
    def my_module() -> None:
        """My Module"""
        pass
    • define meta information in a nest.yml under the path of namespace
    author: Yanzhao
    version: 1.0
    requirements:
        - {url: opencv, tool: conda}
        # default tool is pip
        - torch>=0.4

    Note that you can use both ways at the same time.

Use Nest to manage your experiments

  1. Make sure you have Pytorch-backend modules installed, and if not, execute the following command:

    $ nest module install [email protected]/Nest:pytorch pytorch
  2. Create "train_mnist.yml" with the following content:

    _name: network_trainer
    data_loaders:
      _name: fetch_data
      dataset: 
        _name: mnist
        data_dir: ./data
      batch_size: 128
      num_workers: 4
      transform:
        _name: image_transform
        image_size: 28
        mean: [0.1307]
        std: [0.3081]
      train_splits: [train]
      test_splits: [test]
    model:
      _name: lenet5
    criterion:
      _name: cross_entropy_loss
    optimizer:
      _name: adadelta_optimizer
    meters:
      top1:
        _name: topk_meter
        k: 1
    max_epoch: 10
    device: cpu
    hooks:
      on_end_epoch: 
        - 
          _name: print_state
          formats:
            - 'epoch: {epoch_idx}'
            - 'train_acc: {metrics[train_top1]:.1f}%'
            - 'test_acc: {metrics[test_top1]:.1f}%'   

    Check HERE for more comprehensive demos.

  3. Run your experiments through CLI:

    $ nest task run ./train_mnist.yml
  4. You can also use Nest's task runner in your code:

    >>> from nest import run_tasks
    >>> run_tasks('./train_mnist.yml')
  5. Based on the task runner feature, Nest modules can be flexibly replaced and assembled to create your desired experiment settings.

Contact

Yanzhao Zhou

Issues

Feel free to submit bug reports and feature requests.

Contribution

Pull requests are welcome.

License

MIT

Copyright © 2018-present, Yanzhao Zhou

Owner
ZhouYanzhao
ZhouYanzhao
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022