The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Related tags

Deep LearningBAT
Overview

Box-Aware Tracker (BAT)

Pytorch-Lightning implementation of the Box-Aware Tracker.

Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds. ICCV 2021

Chaoda Zheng, Xu Yan, Jiaotao Gao, Weibing Zhao, Wei Zhang, Zhen Li*, Shuguang Cui

Citation

@InProceedings{zheng2021box,
  title={Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds},
  author={Chaoda Zheng, Xu Yan, Jiaotao Gao, Weibing Zhao, Wei Zhang, Zhen Li, Shuguang Cui},
  journal={ICCV},
  year={2021}
}

Features

  • Modular design. It is easy to config the model and trainng/testing behaviors through just a .yaml file.
  • DDP support for both training and testing.
  • Provide a 3rd party implementation of P2B.

Setup

Installation

  • create the environment

    git clone https://github.com/Ghostish/BAT.git
    cd BAT
    conda create -n bat  python=3.6
    conda activate bat
    
  • Install pytorch

    conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
    

    Our code is well tested with pytorch 1.4.0 and CUDA 10.1. But other platforms may also work. Follow this to install another version of pytorch.

  • Install other dependencies

    pip install -r requirement.txt
    

KITTI dataset

  • Download the data for velodyne, calib and label_02 from KITTI Tracking.
  • Unzip the downloaded files.
  • Put the unzipped files under the same folder as following.
    [Parent Folder]
    --> [calib]
        --> {0000-0020}.txt
    --> [label_02]
        --> {0000-0020}.txt
    --> [velodyne]
        --> [0000-0020] folders with velodynes .bin files
    

Quick Start

Training

To train a model, you must specify the .yaml file with --cfg argument. The .yaml file contains all the configurations of the dataset and the model. Currently, we provide three .yaml files under the cfgs directory. Note: Before running the code, you will need to edit the .yaml file by setting the path argument as the correct root of the dataset.

python main.py --gpu 0 1 --cfg cfgs/BAT_Car.yaml  --batch_size 50 --epoch 60

After you start training, you can start Tensorboard to monitor the training process:

tensorboard --logdir=./ --port=6006

By default, the trainer runs a full evaluation on the full test split after training every epoch. You can set --check_val_every_n_epoch to a larger number to speed up the training.

Testing

To test a trained model, specify the checkpoint location with --checkpoint argument and send the --test flag to the command.

python main.py --gpu 0 1 --cfg cfgs/BAT_Car.yaml  --checkpoint /path/to/checkpoint/xxx.ckpt --test

Reproduction

This codebase produces better results than those we report in our original paper.

Model Category Success Precision Checkpoint
BAT Car 65.37 78.88 pretrained_models/bat_kitti_car.ckpt
BAT Pedestrian 45.74 74.53 pretrained_models/bat_kitti_pedestrian.ckpt

Two Trained BAT models for KITTI dataset are provided in the pretrained_models directory. To reproduce the results, simply run the code with the corresponding .yaml file and checkpoint. For example, to reproduce the tracking results on Car, just run:

python main.py --gpu 0 1 --cfg cfgs/BAT_Car.yaml  --checkpoint ./pretrained_models/bat_kitti_car.ckpt --test

To-dos

  • DDP support
  • Multi-gpus testing
  • Add NuScenes dataset
  • Add codes for visualization
  • Add support for more methods

Acknowledgment

  • This repo is built upon P2B and SC3D.
  • Thank Erik Wijmans for his pytorch implementation of PointNet++
Owner
Kangel Zenn
Ph.D. Student in CUHKSZ.
Kangel Zenn
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
🔮 Execution time predictions for deep neural network training iterations across different GPUs.

Habitat: A Runtime-Based Computational Performance Predictor for Deep Neural Network Training Habitat is a tool that predicts a deep neural network's

Geoffrey Yu 44 Dec 27, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022