Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

Overview

SphereRPN

Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

Authors: Thang Vu, Kookhoi Kim, Haeyong Kang, Xuan Thanh Nguyen, Tung M. Luu, Chang D. Yoo

Installation

Requirements

  • Python 3.7.0
  • Pytorch 1.1.0
  • CUDA 9.0

Virtual Environment

conda create -n pointgroup python==3.7
source activate pointgroup

Install

(1) Clone the repository.

git clone https://github.com/llijiang/PointGroup.git --recursive 
cd PointGroup

(2) Install the dependent libraries.

pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

(3) For the SparseConv, we apply the implementation of spconv. The repository is recursively downloaded at step (1). We use the version 1.0 of spconv.

Note: We further modify spconv\spconv\functional.py to make grad_output contiguous. Make sure you use our modified spconv.

  • To compile spconv, firstly install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # need gcc-5.4 for sparseconv

Add the $INCLUDE_PATH$ that contains boost in lib/spconv/CMakeLists.txt. (Not necessary if it could be found.)

include_directories($INCLUDE_PATH$)
  • Compile the spconv library.
cd lib/spconv
python setup.py bdist_wheel
  • Run cd dist and use pip to install the generated .whl file.

(4) Compile the pointgroup_ops library.

cd lib/pointgroup_ops
python setup.py develop

If any header files could not be found, run the following commands.

python setup.py build_ext --include-dirs=$INCLUDE_PATH$
python setup.py develop

$INCLUDE_PATH$ is the path to the folder containing the header files that could not be found.

Data Preparation

(1) Download the ScanNet v2 dataset.

(2) Put the data in the corresponding folders.

  • Copy the files [scene_id]_vh_clean_2.ply, [scene_id]_vh_clean_2.labels.ply, [scene_id]_vh_clean_2.0.010000.segs.json and [scene_id].aggregation.json into the dataset/scannetv2/train and dataset/scannetv2/val folders according to the ScanNet v2 train/val split.

  • Copy the files [scene_id]_vh_clean_2.ply into the dataset/scannetv2/test folder according to the ScanNet v2 test split.

  • Put the file scannetv2-labels.combined.tsv in the dataset/scannetv2 folder.

The dataset files are organized as follows.

PointGroup
├── dataset
│   ├── scannetv2
│   │   ├── train
│   │   │   ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│   │   ├── val
│   │   │   ├── [scene_id]_vh_clean_2.ply & [scene_id]_vh_clean_2.labels.ply & [scene_id]_vh_clean_2.0.010000.segs.json & [scene_id].aggregation.json
│   │   ├── test
│   │   │   ├── [scene_id]_vh_clean_2.ply 
│   │   ├── scannetv2-labels.combined.tsv

(3) Generate input files [scene_id]_inst_nostuff.pth for instance segmentation.

cd dataset/scannetv2
python prepare_data_inst.py --data_split train
python prepare_data_inst.py --data_split val
python prepare_data_inst.py --data_split test

Training

CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

You can start a tensorboard session by

tensorboard --logdir=./exp --port=6666

Inference and Evaluation

(1) If you want to evaluate on validation set, prepare the .txt instance ground-truth files as the following.

cd dataset/scannetv2
python prepare_data_inst_gttxt.py

Make sure that you have prepared the [scene_id]_inst_nostuff.pth files before.

(2) Test and evaluate.

a. To evaluate on validation set, set split and eval in the config file as val and True. Then run

CUDA_VISIBLE_DEVICES=0 python test.py --config config/pointgroup_run1_scannet.yaml

An alternative evaluation method is to set save_instance as True, and evaluate with the ScanNet official evaluation script.

b. To run on test set, set (split, eval, save_instance) as (test, False, True). Then run

CUDA_VISIBLE_DEVICES=0 python test.py --config config/pointgroup_run1_scannet.yaml

c. To test with a pretrained model, run

CUDA_VISIBLE_DEVICES=0 python test.py --config config/pointgroup_default_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$
Owner
Thang Vu
My research involves in Deep Learning for Computer Vision (image enhancement, object detection, segmentation) and other AI related fields.
Thang Vu
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
CAUSE: Causality from AttribUtions on Sequence of Events

CAUSE: Causality from AttribUtions on Sequence of Events

Wei Zhang 21 Dec 01, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

1 Jan 23, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023