Predicting 10 different clothing types using Xception pre-trained model.

Overview

Predicting-Clothing-Types

Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from lesson 8-deep learning held by DataTalksClub.

Model Demo

Model Demo

About the Dataset

Data Source

I use the dataset from here: https://github.com/alexeygrigorev/clothing-dataset-small

Dataset Information

This is a small dataset contains 10 different clothing types (dress, hat, longsleeve, outwear, pants, shirt, shoes, shorts, skirt, t-shirt).

Short Description of the Files

  1. training-final-dlmodel.ipynb -
  • used transfer learning to get Xception model pretrained on Imagnet.
  • freeze its CNN layers and train the dense layers.
  • used callbacks to save the best model over multiple epochs.
  • did some data augmentation to prevent overfitting and generalize our model.
  • Evalutaing the model, Aciheved 90% accuracy.
  1. streamlit_DLapp.py It deploy the trained model to streamlit cloud

  2. xception_v5_1_10_0.889.h5 - Best model from training saved in this binary format to load it easily.

  3. Pipfile and Pipfile.lock - Python package dependencies, in the pipfile you can find all necessary librares and packages to be able to run the scripts with no problem.

How to run this model

  1. open this link
  2. Upload an image from test dataset or any image from your device that has one clothing type.
  3. click on Predict Class button.

Note: watch this video to see the model in action

How to reproduce this model

  1. clone this repo to get all the code.
  2. clone the dataset using this command
!git clone git@github.com:alexeygrigorev/clothing-dataset-small.git
  1. install pipenv -which is a packaging tool that will help installing all dependencies- , use this command on your terminal.
pip install pipenv
  1. install all dependencies using pipenv by typing this command in your terminal inside your cloned repo folder
pipenv install
  1. Deploying the app locally or on the web 5.1. Locally: open the terminal and use this command
streamlit run streamlit_DLapp.py

5.2. on the web: check the documentation from official website.

Note

If you like my project, I appreciate you starring this repo. Please feel free to fork the content and contact me if you have any questions.

my linkedIn account

Owner
AbdAssalam Ahmad
Love AI & ML & DL
AbdAssalam Ahmad
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022