Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Overview

Perceiver IO

Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Usage

import torch

from src.perceiver.decoders import PerceiverDecoder
from src.perceiver.encoder import PerceiverEncoder
from src.perceiver import PerceiverIO


num_latents = 128
latent_dim = 256
input_dim = 64

decoder_query_dim = 4


encoder = PerceiverEncoder(
    num_latents=num_latents,
    latent_dim=latent_dim,
    input_dim=input_dim,
    num_self_attn_per_block=8,
    num_blocks=1
)
decoder = PerceiverDecoder(
    latent_dim=latent_dim,
    query_dim=decoder_query_dim
)
perceiver = PerceiverIO(encoder, decoder)

inputs = torch.randn(2, 16, input_dim)
output_query = torch.randn(2, 3, decoder_query_dim)

perceiver(inputs, output_query)  # shape = (2, 3, 4)

List of implemented decoders

  • ProjectionDecoder
  • ClassificationDecoder
  • PerceiverDecoder

Example architectures:

Citation

@misc{jaegle2021perceiver,
    title   = {Perceiver IO: A General Architecture for Structured Inputs & Outputs},
    author  = {Andrew Jaegle and Sebastian Borgeaud and Jean-Baptiste Alayrac and Carl Doersch and Catalin Ionescu and David Ding and Skanda Koppula and Andrew Brock and Evan Shelhamer and Olivier Hénaff and Matthew M. Botvinick and Andrew Zisserman and Oriol Vinyals and João Carreira},
    year    = {2021},
    eprint  = {2107.14795},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

A Structured Self-attentive Sentence Embedding
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

Comments
  • Issue related to LayerNorm

    Issue related to LayerNorm

    Hello, man. First of all thank for your effort a lot. I can see that It was taken your time quite much to write a clear code. How ever, I just have a small question about Cross Attention class:

            self.kv_layer_norm = nn.LayerNorm(kv_dim)
            self.q_layer_norm = nn.LayerNorm(q_dim)
            self.qkv_layer_norm = nn.LayerNorm(q_dim)
    

    When I integrated the repository to my program as the last layer . The outputs of these LayerNorm were always 0. When I removed these Norm layers, The code run pretty well but much worse than the simple method (let's say simply concatenate the inputs and queries). p/s: To be more specific, My queries and inputs were taken from 2 separated nets. Do you have any idea about it? Once again, thank you for your great work a lot.

    opened by NathanielNguyen11 7
  • Comparison with perceiver-pytorch?

    Comparison with perceiver-pytorch?

    How does this repository compare with https://github.com/lucidrains/perceiver-pytorch ?

    Would you have any interest in generalizing and integrating the two implementations together?

    opened by xloem 3
  • Bug in MultiHeadAttention

    Bug in MultiHeadAttention

    https://github.com/esceptico/perceiver-io/blob/6b6507334451f61eeb073665b62f00d26f331893/src/perceiver_io/attention.py#L74

    in the referenced line self.scale should be multiplied instead of the divide, since it's defined as self.scale = self.qk_head_dim ** -0.5. The correct expression should be attention = (q @ k.transpose(-2, -1) * self.scale)

    -Nilesh

    opened by nilesh2797 2
Releases(v0.1.4)
Owner
Timur Ganiev
Timur Ganiev
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
22 Oct 14, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022