Honours project, on creating a depth estimation map from two stereo images of featureless regions

Overview

image-processing

This module generates depth maps for shape-blocked-out images

Install

If working with anaconda, then from the root directory:

conda env create --file environment.yml
conda activate image-processing

Otherwise, if python 3 is installed, pip can be used to ensure the required packages are available. From the root directory, run

pip install -r requirements.txt

Files

The core functional files are collection.py, image.py, shape.py, edge.py, segment.py. They each contain a class of the same name. They logically follow this order and encapsulate each other, so collection creates three image objects for the left, center and right images. Each image object creates a number of shape objects. Shape objects create edge objects. Edge objects create segment objects. helper.py contains assisting functions used by these various classes.

This design aids in splitting up all the information and processes necessary to perform the desired function and logically groups it to ease comprehension. Each ought to be well-commented enough to generally understand what each part is doing.

The only one intended to be accessed to retrieve depth maps is collection.py as it orchestrates the entire process.

Usage

Both main.py and auto_gen.py are designed to access collection and to have it create depth maps. They require the initial images to be stored within a directory in assets/ , and each with three further subdirectories, cameraLeft/, cameraCenter/, and cameraRight/ . They save their results to saves/ with the generated images being stored in saves/generated/ . All .img files are object-files generated during this process to reduce the workload needed the next time the same process is executed.

Main

main.py is for individual depth map generation. There are four arguments able to be passed to specify details to the execution.

  1. The directory name desired from within assets/ .
  2. The numerical index (starting at 0) of the specific image desired within the innermost subdirectories
  3. The number representing which image should the depth map visual be based on (0 for left, 1 for center, 2 for right)
  4. Should the resulting depth image be saved
  5. Should the resulting depth image be displayed

While it can take up to these four arguments, no arguments is also possible. Then, the directory within assets/ is randomly selected, as is the index of the image set, and which image is used to generate the depth map visual. It will save and display the results. Partial arguments is also fine, so long as order is maintained.

Example: To display on the left image but not save occluded_road's first image set

python main.py occluded_road 0 0 False True

note: the last argument, True, is redundant in this case
 
Example: Any road_no_occlusion image set, any image used to create the depth map visual (automatically will save and display)

python main.py road_no_occlusion

 

Example: Anything (automatically will save and display)

python main.py

 

The value of having it execute a certain image when its depth image has already been generated is that it will quickly pull it up in the viewer and unlike the static image one can view the individual pixel values the mouse hovers over in the top-right corner.

 

Auto_gen

Alternatively, auto_gen.py is intended for the automated creation of all depth map images.

python auto_gen.py

By simply executing it, it will determine the depth map image all image sets and save them all. The terminal output is saved to a txt file stored in saves/logs. It does not display the results, as that would greatly heed the process of creating all of the results.

Alternatively, it can take two arguments.

  1. Specifies a directory within assets/ to use rather than executing for all of them, similar to the first argument for main.py
  2. Specifies the image to be used as the basis for the depth map visual, similar to the third argument for main.py (0-2 for left, center, and right)

Example: All depth images

python auto_gen.py

 
Example: All Shape_based_stereoPairs depth images using the right image

python auto_gen.py Shape_based_stereoPairs 2

 

For both, if an existing depth map exists, it will not be redone even if the image expected to be used is different. To do so, remove both the .jpg and .img and re-run.

How it works

 

Initialization

Upon creation of an instance of collection, it first intantiates the left image's Image intance. The shape colours are determined and then each shape is instantiated. The bounding box of the given shape is determined as well as its left and right edges, and their segments.

Collection uses the colours determined by the left Image to speed up the other two image's instantiations.

After everything has been created, the segments of each edge, of each shape, in each image must be assigned. First this process requires determining the displacement of edges, which is then used to determine which shape owns and doesn't own which segment.

Generally at this stage all but a few stragglers are assigned. The remaining are due to shapes having few edges, and the only one it could own is shared with the ground or sky shape, and thus difficult to tell which owns it. Using additional information about the shapes ownership is assigned. Finally, it checks to see if any shapes are the ground or sky, as their depths are not calculated.

At this stage, the image objects are saved.

Depth calculation

Then, using this information about the edges of a shape, its depth can be more accurately calculated. Only edges it owns are used to determine its depth. So if it only has its right side, only the right edge is used. Alternatively if both are owned, the midpoint is used.

However, if the shape is determined to have a varying depth, then its depth can alternatively be calculated using the change of slope between the images.

Finally, once all depth values are found, a modified version of the original image is created with its shape colours replaced with their determined depth values, the sky is replaced with pure black, and the ground with pure white. This image is then possibly saved and possibly displayed. Which image is used to re-colour for the depth map depends on either a given argument or random selection.

official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

34 Oct 08, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022