Honours project, on creating a depth estimation map from two stereo images of featureless regions

Overview

image-processing

This module generates depth maps for shape-blocked-out images

Install

If working with anaconda, then from the root directory:

conda env create --file environment.yml
conda activate image-processing

Otherwise, if python 3 is installed, pip can be used to ensure the required packages are available. From the root directory, run

pip install -r requirements.txt

Files

The core functional files are collection.py, image.py, shape.py, edge.py, segment.py. They each contain a class of the same name. They logically follow this order and encapsulate each other, so collection creates three image objects for the left, center and right images. Each image object creates a number of shape objects. Shape objects create edge objects. Edge objects create segment objects. helper.py contains assisting functions used by these various classes.

This design aids in splitting up all the information and processes necessary to perform the desired function and logically groups it to ease comprehension. Each ought to be well-commented enough to generally understand what each part is doing.

The only one intended to be accessed to retrieve depth maps is collection.py as it orchestrates the entire process.

Usage

Both main.py and auto_gen.py are designed to access collection and to have it create depth maps. They require the initial images to be stored within a directory in assets/ , and each with three further subdirectories, cameraLeft/, cameraCenter/, and cameraRight/ . They save their results to saves/ with the generated images being stored in saves/generated/ . All .img files are object-files generated during this process to reduce the workload needed the next time the same process is executed.

Main

main.py is for individual depth map generation. There are four arguments able to be passed to specify details to the execution.

  1. The directory name desired from within assets/ .
  2. The numerical index (starting at 0) of the specific image desired within the innermost subdirectories
  3. The number representing which image should the depth map visual be based on (0 for left, 1 for center, 2 for right)
  4. Should the resulting depth image be saved
  5. Should the resulting depth image be displayed

While it can take up to these four arguments, no arguments is also possible. Then, the directory within assets/ is randomly selected, as is the index of the image set, and which image is used to generate the depth map visual. It will save and display the results. Partial arguments is also fine, so long as order is maintained.

Example: To display on the left image but not save occluded_road's first image set

python main.py occluded_road 0 0 False True

note: the last argument, True, is redundant in this case
 
Example: Any road_no_occlusion image set, any image used to create the depth map visual (automatically will save and display)

python main.py road_no_occlusion

 

Example: Anything (automatically will save and display)

python main.py

 

The value of having it execute a certain image when its depth image has already been generated is that it will quickly pull it up in the viewer and unlike the static image one can view the individual pixel values the mouse hovers over in the top-right corner.

 

Auto_gen

Alternatively, auto_gen.py is intended for the automated creation of all depth map images.

python auto_gen.py

By simply executing it, it will determine the depth map image all image sets and save them all. The terminal output is saved to a txt file stored in saves/logs. It does not display the results, as that would greatly heed the process of creating all of the results.

Alternatively, it can take two arguments.

  1. Specifies a directory within assets/ to use rather than executing for all of them, similar to the first argument for main.py
  2. Specifies the image to be used as the basis for the depth map visual, similar to the third argument for main.py (0-2 for left, center, and right)

Example: All depth images

python auto_gen.py

 
Example: All Shape_based_stereoPairs depth images using the right image

python auto_gen.py Shape_based_stereoPairs 2

 

For both, if an existing depth map exists, it will not be redone even if the image expected to be used is different. To do so, remove both the .jpg and .img and re-run.

How it works

 

Initialization

Upon creation of an instance of collection, it first intantiates the left image's Image intance. The shape colours are determined and then each shape is instantiated. The bounding box of the given shape is determined as well as its left and right edges, and their segments.

Collection uses the colours determined by the left Image to speed up the other two image's instantiations.

After everything has been created, the segments of each edge, of each shape, in each image must be assigned. First this process requires determining the displacement of edges, which is then used to determine which shape owns and doesn't own which segment.

Generally at this stage all but a few stragglers are assigned. The remaining are due to shapes having few edges, and the only one it could own is shared with the ground or sky shape, and thus difficult to tell which owns it. Using additional information about the shapes ownership is assigned. Finally, it checks to see if any shapes are the ground or sky, as their depths are not calculated.

At this stage, the image objects are saved.

Depth calculation

Then, using this information about the edges of a shape, its depth can be more accurately calculated. Only edges it owns are used to determine its depth. So if it only has its right side, only the right edge is used. Alternatively if both are owned, the midpoint is used.

However, if the shape is determined to have a varying depth, then its depth can alternatively be calculated using the change of slope between the images.

Finally, once all depth values are found, a modified version of the original image is created with its shape colours replaced with their determined depth values, the sky is replaced with pure black, and the ground with pure white. This image is then possibly saved and possibly displayed. Which image is used to re-colour for the depth map depends on either a given argument or random selection.

EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023