Video Frame Interpolation with Transformer (CVPR2022)

Overview

VFIformer

Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer

Dependencies

  • python >= 3.8
  • pytorch >= 1.8.0
  • torchvision >= 0.9.0

Prepare Dataset

  1. Vimeo90K Triplet dataset
  2. MiddleBury Other dataset
  3. UCF101 dataset
  4. SNU-FILM dataset

To train on the Vimeo90K, we have to first compute the ground-truth flows between frames using Lite-flownet, you can clone the Lite-flownet repo and put compute_flow_vimeo.py we provide under its main directory and run (remember to change the data path):

python compute_flow_vimeo.py

Get Started

  1. Clone this repo.
    git clone https://github.com/Jia-Research-Lab/VFIformer.git
    cd VFIformer
    
  2. Modify the argument --data_root in train.py according to your Vimeo90K path.

Evaluation

  1. Download the pre-trained models and place them into the pretrained_models/ folder.

    • Pre-trained models can be downloaded from Google Drive
      • pretrained_VFIformer: the final model in the main paper
      • pretrained_VFIformerSmall: the smaller version of the model mentioned in the supplementary file
  2. Test on the Vimeo90K testing set.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    

    If you want to test with the smaller model, please change the --net_name and --resume accordingly:

    python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformerSmall --resume ./pretrained_models/pretrained_VFIformerSmall/net_220.pth --save_result
    

    The testing results are saved in the test_results/ folder. If you do not want to save the image results, you can remove the --save_result argument in the commands optionally.

  3. Test on the MiddleBury dataset.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your MiddleBury path] --testset MiddleburyDataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    
  4. Test on the UCF101 dataset.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your UCF101 path] --testset UFC101Dataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    
  5. Test on the SNU-FILM dataset.

    Modify the argument --data_root according to your data path. Choose the motion level and modify the argument --test_level accordingly, run:

    python FILM_test.py --data_root [your SNU-FILM path] --test_level [easy/medium/hard/extreme] --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth
    

Training

  1. First train the flow estimator. (Note that skipping this step will not cause a significant impact on performance. We keep this step here only to be consistent with our paper.)
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4174 train.py --launcher pytorch --gpu_ids 0,1,2,3 \
            --loss_flow --use_tb_logger --batch_size 48 --net_name IFNet --name train_IFNet --max_iter 300 --crop_size 192 --save_epoch_freq 5
    
  2. Then train the whole framework.
    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4175 train.py --launcher pytorch --gpu_ids 0,1,2,3,4,5,6,7 \
            --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformer --name train_VFIformer --max_iter 300 \
            --crop_size 192 --save_epoch_freq 5 --resume_flownet ./weights/train_IFNet/snapshot/net_final.pth
    
  3. To train the smaller version, run:
    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4175 train.py --launcher pytorch --gpu_ids 0,1,2,3,4,5,6,7 \
            --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformerSmall --name train_VFIformerSmall --max_iter 300 \
            --crop_size 192 --save_epoch_freq 5 --resume_flownet ./weights/train_IFNet/snapshot/net_final.pth
    

Test on your own data

  1. Modify the arguments --img0_path and --img1_path according to your data path, run:
    python demo.py --img0_path [your img0 path] --img1_path [your img1 path] --save_folder [your save path] --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth
    

Acknowledgement

We borrow some codes from RIFE and SwinIR. We thank the authors for their great work.

Citation

Please consider citing our paper in your publications if it is useful for your research.

@inproceedings{lu2022vfiformer,
    title={Video Frame Interpolation with Transformer},
    author={Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022},
}

Contact

[email protected]

Owner
DV Lab
Deep Vision Lab
DV Lab
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
PArallel Distributed Deep LEarning: Machine Learning Framework from Industrial Practice (『飞桨』核心框架,深度学习&机器学习高性能单机、分布式训练和跨平台部署)

English | 简体中文 Welcome to the PaddlePaddle GitHub. PaddlePaddle, as the only independent R&D deep learning platform in China, has been officially open

19.4k Jan 04, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022