code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Overview

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation.

framework

Prerequisites:

  • python == 3.6.8
  • pytorch ==1.1.0
  • torchvision == 0.3.0
  • numpy, scipy, PIL, argparse, tqdm

Dataset:

  • Please manually download the datasets Office, Office-Home, ImageNet-Caltech from the official websites, and modify the path of images in each '.txt' under the folder './data/'.
  • We adopt the same data protocol as PADA.

Training:

  1. Partial Domain Adaptation (PDA) on the Office-Home dataset [Art(s=0) -> Clipart(t=1)]
    python run_partial.py --s 0 --t 1 --dset office_home --net ResNet50 --cot_weight 1. --output run1 --gpu_id 0
  2. Partial Domain Adaptation (PDA) on the Office dataset [Amazon(s=0) -> DSLR(t=1)]
    python run_partial.py --s 0 --t 1 --dset office --net ResNet50 --cot_weight 5. --output run1 --gpu_id 0
    python run_partial.py --s 0 --t 1 --dset office --net VGG16 --cot_weight 5. --output run1 --gpu_id 0
  3. Partial Domain Adaptation (PDA) on the ImageNet-Caltech dataset [ImageNet(s=0) -> Caltech(t=1)]
    python run_partial.py --s 0 --t 1 --dset imagenet_caltech --net ResNet50 --cot_weight 5. --output run1 --gpu_id 0

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{liang2020baus,
    title={A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation},
    author={Liang, Jian, and Wang, Yunbo, and Hu, Dapeng, and He, Ran and Feng, Jiashi},
    booktitle={European Conference on Computer Vision (ECCV)},
    pages={xx-xx},
    month = {August},
    year={2020}
}

Acknowledgement

Some parts of this project are built based on the following open-source implementation

Contact

Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
DexterRedTool - Dexter's Red Team Tool that creates cronjob/task scheduler to consistently creates users

DexterRedTool Author: Dexter Delandro CSEC 473 - Spring 2022 This tool persisten

2 Feb 16, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
License Plate Detection Application

LicensePlate_Project πŸš— πŸš™ [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 μˆ˜μ§‘ 및 라벨링 μ°¨λŸ‰ 번호판 이미지λ₯Ό 직접 μˆ˜μ§‘ν•˜μ—¬ 각 이미지에 λŒ€ν•΄ '번호판

4 Oct 10, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022