Package for working with hypernetworks in PyTorch.

Overview

Hypernetworks for PyTorch

This package contains utilities that make it easy to work with hypernetworks in PyTorch.

Installation

You can either install the latest package version via

python3 -m pip install hypnettorch

or, you directly install the current sources

python3 -m pip install git+https://github.com/chrhenning/hypnettorch

Installation for developers

If you actively develop the package, it is easiest to install it in development mode, such that all changes that are done to source files are directly visible when you use the package.

Clone the repository to a location of your choice

git clone https://github.com/chrhenning/hypnettorch.git

and move inside the cloned repo

cd ./hypnettorch

Now, you can simply install the package in editable mode, which will ensure that you can easily update the package sources (cf. development mode)

pip3 install --editable . --user

Since the package was installed in editable mode, you can always update the sources simply by pulling the most recent code

git pull

You can uninstall the package at any point by running python3 setup.py develop -u.

Usage

The basic functionalities of the package are quite intuitive and easy to use, e.g.,

from hypnettorch.mnets import MLP
net = MLP()

There are several tutorials. Check out the getting started tutorial when working with hypnettorch for the first time.

Documentation

The documentation can be found here.

Note for developers

The documentation can be build using

python3 setup.py build_sphinx

and opened via the file index.html.

Citation

When using this package in your research project, please consider citing one of our papers for which this package has been developed.

@inproceedings{oshg2019hypercl,
title={Continual learning with hypernetworks},
author={Johannes von Oswald and Christian Henning and Jo{\~a}o Sacramento and Benjamin F. Grewe},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://arxiv.org/abs/1906.00695}
}
@inproceedings{ehret2020recurrenthypercl,
  title={Continual Learning in Recurrent Neural Networks},
  author={Benjamin Ehret and Christian Henning and Maria R. Cervera and Alexander Meulemans and Johannes von Oswald and Benjamin F. Grewe},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://arxiv.org/abs/2006.12109}
}
@inproceedings{posterior:replay:2021:henning:cervera,
title={Posterior Meta-Replay for Continual Learning}, 
      author={Christian Henning and Maria R. Cervera and Francesco D'Angelo and Johannes von Oswald and Regina Traber and Benjamin Ehret and Seijin Kobayashi and João Sacramento and Benjamin F. Grewe},
booktitle={Conference on Neural Information Processing Systems},
year={2021},
url={https://arxiv.org/abs/2103.01133}
}
Owner
Christian Henning
Machine Learning Researcher
Christian Henning
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Datasets, Transforms and Models specific to Computer Vision

torchvision The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. Installat

13.1k Jan 02, 2023
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Joint learning of images and text via maximization of mutual information

mutual_info_img_txt Joint learning of images and text via maximization of mutual information. This repository incorporates the algorithms presented in

Ruizhi Liao 10 Dec 22, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
A machine learning project which can detect and predict the skin disease through image recognition.

ML-Project-2021 A machine learning project which can detect and predict the skin disease through image recognition. The dataset used for this is the H

Debshishu Ghosh 1 Jan 13, 2022