Package for working with hypernetworks in PyTorch.

Overview

Hypernetworks for PyTorch

This package contains utilities that make it easy to work with hypernetworks in PyTorch.

Installation

You can either install the latest package version via

python3 -m pip install hypnettorch

or, you directly install the current sources

python3 -m pip install git+https://github.com/chrhenning/hypnettorch

Installation for developers

If you actively develop the package, it is easiest to install it in development mode, such that all changes that are done to source files are directly visible when you use the package.

Clone the repository to a location of your choice

git clone https://github.com/chrhenning/hypnettorch.git

and move inside the cloned repo

cd ./hypnettorch

Now, you can simply install the package in editable mode, which will ensure that you can easily update the package sources (cf. development mode)

pip3 install --editable . --user

Since the package was installed in editable mode, you can always update the sources simply by pulling the most recent code

git pull

You can uninstall the package at any point by running python3 setup.py develop -u.

Usage

The basic functionalities of the package are quite intuitive and easy to use, e.g.,

from hypnettorch.mnets import MLP
net = MLP()

There are several tutorials. Check out the getting started tutorial when working with hypnettorch for the first time.

Documentation

The documentation can be found here.

Note for developers

The documentation can be build using

python3 setup.py build_sphinx

and opened via the file index.html.

Citation

When using this package in your research project, please consider citing one of our papers for which this package has been developed.

@inproceedings{oshg2019hypercl,
title={Continual learning with hypernetworks},
author={Johannes von Oswald and Christian Henning and Jo{\~a}o Sacramento and Benjamin F. Grewe},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://arxiv.org/abs/1906.00695}
}
@inproceedings{ehret2020recurrenthypercl,
  title={Continual Learning in Recurrent Neural Networks},
  author={Benjamin Ehret and Christian Henning and Maria R. Cervera and Alexander Meulemans and Johannes von Oswald and Benjamin F. Grewe},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://arxiv.org/abs/2006.12109}
}
@inproceedings{posterior:replay:2021:henning:cervera,
title={Posterior Meta-Replay for Continual Learning}, 
      author={Christian Henning and Maria R. Cervera and Francesco D'Angelo and Johannes von Oswald and Regina Traber and Benjamin Ehret and Seijin Kobayashi and João Sacramento and Benjamin F. Grewe},
booktitle={Conference on Neural Information Processing Systems},
year={2021},
url={https://arxiv.org/abs/2103.01133}
}
Owner
Christian Henning
Machine Learning Researcher
Christian Henning
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023