PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Overview

Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

[Code] [Data] [Project Page]

Official PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation, published at ICCV 2021.

Have you ever looked at a painting and wondered what is the story behind it? This work presents a framework to bring art closer to people by generating comprehensive descriptions of fine-art paintings. Generating informative descriptions for artworks, however, is extremely challenging, as it requires to 1) describe multiple aspects of the image such as its style, content, or composition, and 2) provide background and contextual knowledge about the artist, their influences, or the historical period. To address these challenges, we introduce a multi-topic and knowledgeable art description framework, which modules the generated sentences according to three artistic topics and, additionally, enhances each description with external knowledge. The framework is validated through an exhaustive analysis, both quantitative and qualitative, as well as a comparative human evaluation, demonstrating outstanding results in terms of both topic diversity and information veracity.

Setup

Requirements

The code are tested under Python3.6 with the following packages:

torch==1.1.0
torchvision==0.2.2
numpy==1.16.2
visdom==0.1.8.9
transformers==2.1.1
nltk==3.2.3
stanfordcorenlp==3.9.1.1
scipy==1.3.1
pandas==0.25.1

Prepare Data

1.Download the dataset from this repository

2.Put the annotation folder into the MaskedSentenceGeneration

Masked Sentence Generation

cd MaskedSentenceGeneration
python prepare_dataset.py
bash train.sh
bash test_one.sh / bash test_all.sh

Knowledge Retrieval

Please look into here

Knowledge Filling

cd KnowledgeFilling
python create_dataset_drqa_src.py
bash train.sh
bash test.sh

Citation

If you find the data in this repository useful, please cite our paper:

@InProceedings{bai2021explain,
   author    = {Zechen Bai and Yuta Nakashima and Noa Garcia},
   title     = {Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation},
   booktitle = {International Conference in Computer Vision},
   year      = {2021},
}
Owner
Zechen Bai
No one designed us, we are just bad codes.
Zechen Bai
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization,

FSRA This repository contains the dataset link and the code for our paper A Transformer-Based Feature Segmentation and Region Alignment Method For UAV

Dmmm 32 Dec 18, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Woosung Choi 63 Nov 14, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021