This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

Related tags

Deep LearningHCSC
Overview

HCSC: Hierarchical Contrastive Selective Coding

This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding), whose details are in this paper.

HCSC is an effective and efficient method to pre-train image encoders in a self-supervised fashion. In general, this method seeks to learn image representations with hierarchical semantic structures. It utilizes hierarchical K-means to derive hierarchical prototypes, and these prototypes represent the hierarchical semantics underlying the data. On such basis, we perform Instance-wise and Prototypical Contrastive Selective Coding to inject the information within hierarchical prototypes into image representations. HCSC has achieved SOTA performance on the self-supervised pre-training of CNNs (e.g., ResNet-50), and we will further study its potential on pre-training Vision Transformers.

Roadmap

  • [2022/02/01] The initial release! We release all source code for pre-training and downstream evaluation. We release three pre-trained ResNet-50 models: 200 epochs (single-crop), 200 epochs (multi-crop) and 400 epochs (single-crop, batch size: 256).

TODO

  • Finish the pre-training of 400 epochs ResNet-50 models (multi-crop) and release.
  • Finish the pre-training of 800 epochs ResNet-50 models (single- & multi-crop) and release.
  • Support Vision Transformer backbones.
  • Pre-train Vision Transformers with HCSC and release model weights under various configurations.

Model Zoo

We will continually release our pre-trained HCSC model weights and corresponding training configs. The current finished ones are as follows:

Backbone Method Crop Epoch Batch size Lincls top-1 Acc. KNN top-1 Acc. url config
ResNet-50 HCSC Single 200 256 69.2 60.7 model config
ResNet-50 HCSC Multi 200 256 73.3 66.6 model config
ResNet-50 HCSC Single 400 256 70.6 63.4 model config

Installation

Use following command to install dependencies (python3.7 with pip installed):

pip3 install -r requirement.txt

If having trouble installing PyTorch, follow the original guidance (https://pytorch.org/). Notably, the code is tested with cudatoolkit version 10.2.

Pre-training on ImageNet

Download ImageNet dataset under [ImageNet Folder]. Go to the path "[ImageNet Folder]/val" and use this script to build sub-folders.

To train single-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py [your ImageNet Folder]

To train multi-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py --multicrop [your ImageNet Folder]

Downstream Evaluation

Evaluation: Linear Classification on ImageNet

With a pre-trained model, to train a supervised linear classifier with all available GPUs, run:

python3 eval_lincls_imagenet.py --data [your ImageNet Folder] \
--dist-url tcp://localhost:10001 --world-size 1 --rank 0 \
--pretrained [your pre-trained model (example:out.pth)]

Evaluation: KNN Evaluation on ImageNet

To reproduce the KNN evaluation results with a pre-trained model using a single GPU, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=1 eval_knn.py \
--checkpoint_key state_dict \
--pretrained [your pre-trained model] \
--data [your ImageNet Folder]

Evaluation: Semi-supervised Learning on ImageNet

To fine-tune a pre-trained model with 1% or 10% ImageNet labels with 8 Tesla-V100-32GB GPUs, run:

1% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 1 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

10% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 10 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

Evaluation: Transfer Learning - Classification on VOC / Places205

VOC

1. Download the VOC dataset.
2. Finetune and evaluate on PASCAL VOC (with a single GPU):
cd voc_cls/ 
python3 main.py --data [your voc data folder] \
--pretrained [your pretrained weights]

Places205

1. Download the Places205 dataset (resized 256x256 version)
2. Linear Classification on Places205 (with all available GPUs):
python3 eval_lincls_places.py --data [your places205 data folder] \
--data-url tcp://localhost:10001 \
--pretrained [your pretrained weights]

Evaluation: Transfer Learning - Object Detection on VOC / COCO

1. Download VOC and COCO Dataset (under ./detection/datasets).

2. Install detectron2.

3. Convert a pre-trained model to the format of detectron2:

cd detection
python3 convert-pretrain-to-detectron2.py [your pretrained weight] out.pkl

4. Train on PASCAL VOC/COCO:

Finetune and evaluate on VOC (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/pascal_voc_R_50_C4_24k_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl
Finetune and evaluate on COCO (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/coco_R_50_C4_2x_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl

Evaluation: Clustering Evaluation on ImageNet

To reproduce the clustering evaluation results with a pre-trained model using all available GPUs, run:

python3 eval_clustering.py --dist-url tcp://localhost:10001 \
--multiprocessing-distributed --world-size 1 --rank 0 \
--num-cluster [target num cluster] \
--pretrained [your pretrained model weights] \
[your ImageNet Folder]

In the experiments of our paper, we set --num-cluster as 25000 and 1000.

License

This repository is released under the MIT license as in the LICENSE file.

Citation

If you find this repository useful, please kindly consider citing the following paper:

@article{guo2022hcsc,
  title={HCSC: Hierarchical Contrastive Selective Coding},
  author={Guo, Yuanfan and Xu, Minghao and Li, Jiawen and Ni, Bingbing and Zhu, Xuanyu and Sun, Zhenbang and Xu, Yi},
  journal={arXiv preprint arXiv:2202.00455},
  year={2022}
}
Owner
YUANFAN GUO
From SJTU. Working on self-supervised pre-training.
YUANFAN GUO
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022