This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

Related tags

Deep LearningHCSC
Overview

HCSC: Hierarchical Contrastive Selective Coding

This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding), whose details are in this paper.

HCSC is an effective and efficient method to pre-train image encoders in a self-supervised fashion. In general, this method seeks to learn image representations with hierarchical semantic structures. It utilizes hierarchical K-means to derive hierarchical prototypes, and these prototypes represent the hierarchical semantics underlying the data. On such basis, we perform Instance-wise and Prototypical Contrastive Selective Coding to inject the information within hierarchical prototypes into image representations. HCSC has achieved SOTA performance on the self-supervised pre-training of CNNs (e.g., ResNet-50), and we will further study its potential on pre-training Vision Transformers.

Roadmap

  • [2022/02/01] The initial release! We release all source code for pre-training and downstream evaluation. We release three pre-trained ResNet-50 models: 200 epochs (single-crop), 200 epochs (multi-crop) and 400 epochs (single-crop, batch size: 256).

TODO

  • Finish the pre-training of 400 epochs ResNet-50 models (multi-crop) and release.
  • Finish the pre-training of 800 epochs ResNet-50 models (single- & multi-crop) and release.
  • Support Vision Transformer backbones.
  • Pre-train Vision Transformers with HCSC and release model weights under various configurations.

Model Zoo

We will continually release our pre-trained HCSC model weights and corresponding training configs. The current finished ones are as follows:

Backbone Method Crop Epoch Batch size Lincls top-1 Acc. KNN top-1 Acc. url config
ResNet-50 HCSC Single 200 256 69.2 60.7 model config
ResNet-50 HCSC Multi 200 256 73.3 66.6 model config
ResNet-50 HCSC Single 400 256 70.6 63.4 model config

Installation

Use following command to install dependencies (python3.7 with pip installed):

pip3 install -r requirement.txt

If having trouble installing PyTorch, follow the original guidance (https://pytorch.org/). Notably, the code is tested with cudatoolkit version 10.2.

Pre-training on ImageNet

Download ImageNet dataset under [ImageNet Folder]. Go to the path "[ImageNet Folder]/val" and use this script to build sub-folders.

To train single-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py [your ImageNet Folder]

To train multi-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py --multicrop [your ImageNet Folder]

Downstream Evaluation

Evaluation: Linear Classification on ImageNet

With a pre-trained model, to train a supervised linear classifier with all available GPUs, run:

python3 eval_lincls_imagenet.py --data [your ImageNet Folder] \
--dist-url tcp://localhost:10001 --world-size 1 --rank 0 \
--pretrained [your pre-trained model (example:out.pth)]

Evaluation: KNN Evaluation on ImageNet

To reproduce the KNN evaluation results with a pre-trained model using a single GPU, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=1 eval_knn.py \
--checkpoint_key state_dict \
--pretrained [your pre-trained model] \
--data [your ImageNet Folder]

Evaluation: Semi-supervised Learning on ImageNet

To fine-tune a pre-trained model with 1% or 10% ImageNet labels with 8 Tesla-V100-32GB GPUs, run:

1% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 1 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

10% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 10 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

Evaluation: Transfer Learning - Classification on VOC / Places205

VOC

1. Download the VOC dataset.
2. Finetune and evaluate on PASCAL VOC (with a single GPU):
cd voc_cls/ 
python3 main.py --data [your voc data folder] \
--pretrained [your pretrained weights]

Places205

1. Download the Places205 dataset (resized 256x256 version)
2. Linear Classification on Places205 (with all available GPUs):
python3 eval_lincls_places.py --data [your places205 data folder] \
--data-url tcp://localhost:10001 \
--pretrained [your pretrained weights]

Evaluation: Transfer Learning - Object Detection on VOC / COCO

1. Download VOC and COCO Dataset (under ./detection/datasets).

2. Install detectron2.

3. Convert a pre-trained model to the format of detectron2:

cd detection
python3 convert-pretrain-to-detectron2.py [your pretrained weight] out.pkl

4. Train on PASCAL VOC/COCO:

Finetune and evaluate on VOC (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/pascal_voc_R_50_C4_24k_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl
Finetune and evaluate on COCO (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/coco_R_50_C4_2x_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl

Evaluation: Clustering Evaluation on ImageNet

To reproduce the clustering evaluation results with a pre-trained model using all available GPUs, run:

python3 eval_clustering.py --dist-url tcp://localhost:10001 \
--multiprocessing-distributed --world-size 1 --rank 0 \
--num-cluster [target num cluster] \
--pretrained [your pretrained model weights] \
[your ImageNet Folder]

In the experiments of our paper, we set --num-cluster as 25000 and 1000.

License

This repository is released under the MIT license as in the LICENSE file.

Citation

If you find this repository useful, please kindly consider citing the following paper:

@article{guo2022hcsc,
  title={HCSC: Hierarchical Contrastive Selective Coding},
  author={Guo, Yuanfan and Xu, Minghao and Li, Jiawen and Ni, Bingbing and Zhu, Xuanyu and Sun, Zhenbang and Xu, Yi},
  journal={arXiv preprint arXiv:2202.00455},
  year={2022}
}
Owner
YUANFAN GUO
From SJTU. Working on self-supervised pre-training.
YUANFAN GUO
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022