Generate images from texts. In Russian

Overview

ruDALL-E

Generate images from texts

Apache license Downloads Coverage Status pipeline pre-commit.ci status

pip install rudalle==1.1.0rc0

🤗 HF Models:

ruDALL-E Malevich (XL)
ruDALL-E Emojich (XL) (readme here)
ruDALL-E Surrealist (XL)

Minimal Example:

Open In Colab Kaggle Hugging Face Spaces

Example usage ruDALL-E Malevich (XL) with 3.5GB vRAM! Open In Colab

Finetuning example Open In Colab

generation by ruDALLE:

import ruclip
from rudalle.pipelines import generate_images, show, super_resolution, cherry_pick_by_ruclip
from rudalle import get_rudalle_model, get_tokenizer, get_vae, get_realesrgan
from rudalle.utils import seed_everything

# prepare models:
device = 'cuda'
dalle = get_rudalle_model('Malevich', pretrained=True, fp16=True, device=device)
tokenizer = get_tokenizer()
vae = get_vae(dwt=True).to(device)

# pipeline utils:
realesrgan = get_realesrgan('x2', device=device)
clip, processor = ruclip.load('ruclip-vit-base-patch32-384', device=device)
clip_predictor = ruclip.Predictor(clip, processor, device, bs=8)
text = 'радуга на фоне ночного города'

seed_everything(42)
pil_images = []
scores = []
for top_k, top_p, images_num in [
    (2048, 0.995, 24),
]:
    _pil_images, _scores = generate_images(text, tokenizer, dalle, vae, top_k=top_k, images_num=images_num, bs=8, top_p=top_p)
    pil_images += _pil_images
    scores += _scores

show(pil_images, 6)

auto cherry-pick by ruCLIP:

top_images, clip_scores = cherry_pick_by_ruclip(pil_images, text, clip_predictor, count=6)
show(top_images, 3)

super resolution:

sr_images = super_resolution(top_images, realesrgan)
show(sr_images, 3)

text, seed = 'красивая тян из аниме', 6955

Image Prompt

see jupyters/ruDALLE-image-prompts-A100.ipynb

text, seed = 'Храм Василия Блаженного', 42
skyes = [red_sky, sunny_sky, cloudy_sky, night_sky]

Aspect ratio images -->NEW<--

🚀 Contributors 🚀

Supported by

Social Media

Comments
  • Smaller / Distilled model?

    Smaller / Distilled model?

    Will there be a smaller or a distilled model release? The problem with inferencing in google colab is the speeds. 4:32 for one image on a P100, and 2 hours+ for 3 images on K80.

    opened by johnpaulbin 10
  • RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

    RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR

    i use default code and get error after generation 100% please help i use windows and conda

    `◼️ Malevich is 1.3 billion params model from the family GPT3-like, that uses Russian language and text+image multi-modality. x4 --> ready tokenizer --> ready Working with z of shape (1, 256, 32, 32) = 262144 dimensions. vae --> ready ruclip --> ready 100%|██████████████████████████████████████████████████████████████████████████████| 1024/1024 [00:46<00:00, 22.14it/s] Traceback (most recent call last): File "gen.py", line 29, in _pil_images, _scores = generate_images(text, tokenizer, dalle, vae, top_k=top_k, images_num=images_num, top_p=top_p) File "C:\Users\1\anaconda3\lib\site-packages\rudalle\pipelines.py", line 60, in generate_images images = vae.decode(codebooks) File "C:\Users\1\anaconda3\lib\site-packages\rudalle\vae\model.py", line 38, in decode img = self.model.decode(z) File "C:\Users\1\anaconda3\lib\site-packages\rudalle\vae\model.py", line 98, in decode quant = self.post_quant_conv(quant) File "C:\Users\1\anaconda3\lib\site-packages\torch\nn\modules\module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "C:\Users\1\anaconda3\lib\site-packages\torch\nn\modules\conv.py", line 399, in forward return self._conv_forward(input, self.weight, self.bias) File "C:\Users\1\anaconda3\lib\site-packages\torch\nn\modules\conv.py", line 395, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: cuDNN error: CUDNN_STATUS_INTERNAL_ERROR You can try to repro this exception using the following code snippet. If that doesn't trigger the error, please include your original repro script when reporting this issue.

    import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True torch.backends.cudnn.allow_tf32 = True data = torch.randn([3, 256, 32, 32], dtype=torch.float, device='cuda', requires_grad=True).to(memory_format=torch.channels_last) net = torch.nn.Conv2d(256, 256, kernel_size=[1, 1], padding=[0, 0], stride=[1, 1], dilation=[1, 1], groups=1) net = net.cuda().float().to(memory_format=torch.channels_last) out = net(data) out.backward(torch.randn_like(out)) torch.cuda.synchronize()

    ConvolutionParams data_type = CUDNN_DATA_FLOAT padding = [0, 0, 0] stride = [1, 1, 0] dilation = [1, 1, 0] groups = 1 deterministic = true allow_tf32 = true input: TensorDescriptor 0000020481F094B0 type = CUDNN_DATA_FLOAT nbDims = 4 dimA = 3, 256, 32, 32, strideA = 262144, 1, 8192, 256, output: TensorDescriptor 0000020481F09590 type = CUDNN_DATA_FLOAT nbDims = 4 dimA = 3, 256, 32, 32, strideA = 262144, 1, 8192, 256, weight: FilterDescriptor 000001FFD2E76AF0 type = CUDNN_DATA_FLOAT tensor_format = CUDNN_TENSOR_NHWC nbDims = 4 dimA = 256, 256, 1, 1, Pointer addresses: input: 0000001538C7D000 output: 000000153B87D000 weight: 00000014D3BB0000 `

    opened by bitcoin5000 7
  • Auto cut pictures into separated images

    Auto cut pictures into separated images

    Есть ли какие-нибудь параметры, которые автоматически нарежут и сохранят сгенерированные картинки по отдельности?


    Are there any args that will automatically cut and save separated images?

    opened by Sidiusz 4
  • Gradient checkpointing

    Gradient checkpointing

    This patch enables gradient checkpointing for ruDALLE.

    It's possible to use up to 3x higher batch sizes in memory-limited environments during training.

    Setting the gradient_checkpointing during model.forward makes a checkpoint every gradient_checkpointing layers. 6 is a good starting value.

    opened by neverix 3
  • Feature/dwt vae

    Feature/dwt vae

    add support decoding vae with DWT (discrete wavelet transform):

    allow restore 512x512 images

    thanks a lot @bes for issue https://github.com/sberbank-ai/ru-dalle/issues/42 with this idea 👍

    vae = get_vae(dwt=True)
    
    opened by shonenkov 3
  • optimize image prompts

    optimize image prompts

    This enables caching for image prompts. For some reason, the results change slightly. I tried looking for off-by-one bugs in this, but couldn't find one myself.

    opened by neverix 3
  • The error in ruDall-e code that published in Kaggle

    The error in ruDall-e code that published in Kaggle

    Execution of ruDall-e code in the Kaggle notebook (as is published), in GPU session ends with error:

    ModuleNotFoundError                       Traceback (most recent call last)
    /tmp/ipykernel_29/1914141142.py in <module>
    ----> 1 from rudalle.pipelines import generate_images, show, super_resolution, cherry_pick_by_clip
          2 from rudalle import get_rudalle_model, get_tokenizer, get_vae, get_realesrgan, get_ruclip
          3 from rudalle.utils import seed_everything
    
    ModuleNotFoundError: No module named 'rudalle'
    
    

    The error message refers to this code:

    !pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html > /dev/null
    !pip install rudalle==0.0.1rc1 > /dev/null
    
    opened by XieBaoshi 3
  • Constantly having to redownload models

    Constantly having to redownload models

    Hi, I've noticed that running it on a local jupyter instance will always redownload the model again. Is there a way I can avoid this as I don't want to be waiting for it to finish everytime. Thanks/

    opened by JohnnyRacer 2
  • Problem about the PyTorch vision?

    Problem about the PyTorch vision?

    I have look for the issues but I can't find the same problem. So sorry to bother you. GPU: 截屏2021-12-02 下午6 35 14 my python environment: pytorch=1.8.0&torchvision=0.9.0, cudatoolkit=11.3.1&cudnn =8.2.1. I have tried the rudalle=0.3.0 just following the readme.md, or 0.0.1rc5 by the RTX3090.ipynb, but I only got the following error! 截屏2021-12-02 下午6 38 49

    So I wanna know if any problem in my environment? Waiting for your reply!

    opened by Wang-Xiaodong1899 2
  • image_prompts.py – borders crop not working properly

    image_prompts.py – borders crop not working properly

    From an official documentation:

    borders (dict[str] | int): borders that we croped from pil_image example: {'up': 4, 'right': 0, 'left': 0, 'down': 0} (1 int eq 8 pixels)

    Up crop works just fine. But if I will pass as a crop argument something other than "Up" in the result, I will get an AssertionError: telegram-cloud-photo-size-2-5197407051389712641-y

    Thank you for a fantastic algo ✨

    opened by DenisSergeevitch 2
  • Не запускается generate_images

    Не запускается generate_images

    Пытаюсь запустить на device = 'cpu'. Пример из README самый первый

    Падает с таким трейсбеком. Что я делаю не так?

    ◼️ Malevich is 1.3 billion params model from the family GPT3-like, that uses Russian language and text+image multi-modality.
    x4 --> ready
    tokenizer --> ready
    Working with z of shape (1, 256, 32, 32) = 262144 dimensions.
    vae --> ready
    ruclip --> ready
      0%|          | 0/1024 [00:00<?, ?it/s]
    Traceback (most recent call last):
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\pipelines.py", line 46, in generate_images
        logits, has_cache = dalle(out, attention_mask,
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\fp16.py", line 51, in forward
        return fp16_to_fp32(self.module(*(fp32_to_fp16(inputs)), **kwargs))
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\model.py", line 150, in forward
        transformer_output, present_has_cache = self.transformer(
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\transformer.py", line 76, in forward
        hidden_states, present_has_cache = layer(hidden_states, mask, has_cache=has_cache, use_cache=use_cache)
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\rudalle\dalle\transformer.py", line 146, in forward
        layernorm_output = self.input_layernorm(hidden_states)
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
        return forward_call(*input, **kwargs)
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\modules\normalization.py", line 173, in forward
        return F.layer_norm(
      File "%projectfolder%\test\venv\lib\site-packages\torch\nn\functional.py", line 2346, in layer_norm
        return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
    RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'
    
    opened by Xoma163 2
  • Add optional resume_download argument to help download large models

    Add optional resume_download argument to help download large models

    It's kinda pain to download large models with unstable network connection. For instance, i've started seeing this type of error (see screenshot). It breaks download process and you have to start again from zero bytes downloaded.

    However, cached_download(..) function in huggingface_hub has resume_download argument that can be used to restart download without loosing progress. See this line. So i think it would be helpful to add it as optional argument(defaults to False) to the get_rudalle_model(..) so users can turn it on if they have unstable internet.

    opened by Rexhaif 0
  • kandinsky model not available

    kandinsky model not available

    Nice to see the update! There is an auth error with the kandinsky model. Not sure if this is intended as there seem to be some token requirement. Could you clarify?

    opened by xavierleung 0
  • RuntimeError: nvrtc: error: failed to open libnvrtc-builtins.so.11.1.

    RuntimeError: nvrtc: error: failed to open libnvrtc-builtins.so.11.1.

    What might be causing this ?

    RuntimeError: nvrtc: error: failed to open libnvrtc-builtins.so.11.1. Make sure that libnvrtc-builtins.so.11.1 is installed correctly. nvrtc compilation failed:

    #define NAN __int_as_float(0x7fffffff)
    #define POS_INFINITY __int_as_float(0x7f800000)
    #define NEG_INFINITY __int_as_float(0xff800000)
    
    
    template<typename T>
    __device__ T maximum(T a, T b) {
      return isnan(a) ? a : (a > b ? a : b);
    }
    
    template<typename T>
    __device__ T minimum(T a, T b) {
      return isnan(a) ? a : (a < b ? a : b);
    }
    
    
    #define __HALF_TO_US(var) *(reinterpret_cast<unsigned short *>(&(var)))
    #define __HALF_TO_CUS(var) *(reinterpret_cast<const unsigned short *>(&(var)))
    #if defined(__cplusplus)
      struct __align__(2) __half {
        __host__ __device__ __half() { }
    
      protected:
        unsigned short __x;
      };
    
      /* All intrinsic functions are only available to nvcc compilers */
      #if defined(__CUDACC__)
        /* Definitions of intrinsics */
        __device__ __half __float2half(const float f) {
          __half val;
          asm("{  cvt.rn.f16.f32 %0, %1;}\n" : "=h"(__HALF_TO_US(val)) : "f"(f));
          return val;
        }
    
        __device__ float __half2float(const __half h) {
          float val;
          asm("{  cvt.f32.f16 %0, %1;}\n" : "=f"(val) : "h"(__HALF_TO_CUS(h)));
          return val;
        }
    
      #endif /* defined(__CUDACC__) */
    #endif /* defined(__cplusplus) */
    #undef __HALF_TO_US
    #undef __HALF_TO_CUS
    
    typedef __half half;
    
    extern "C" __global__
    void fused_mul_mul_mul_mu_5065363705190979294(half* t0, half* aten_mul) {
    {
      float t0_1 = __half2float(t0[(8192 * (((512 * blockIdx.x + threadIdx.x) / 8192) % 128) + ((512 * blockIdx.x + threadIdx.x) / 1048576) * 1048576) + (512 * blockIdx.x + threadIdx.x) % 8192]);
      aten_mul[(8192 * (((512 * blockIdx.x + threadIdx.x) / 8192) % 128) + ((512 * blockIdx.x + threadIdx.x) / 1048576) * 1048576) + (512 * blockIdx.x + threadIdx.x) % 8192] = __float2half((t0_1 * 0.5f) * ((tanhf((t0_1 * 0.7978845834732056f) * ((t0_1 * 0.04471499845385551f) * t0_1 + 1.f))) + 1.f));
    }
    }
    
    opened by c0ffymachyne 1
  • Bad syntax in collab

    Bad syntax in collab

    In https://colab.research.google.com/drive/1wGE-046et27oHvNlBNPH07qrEQNE04PQ?usp=sharing#scrollTo=GdOYJvwZSB-D

    it should be a couple of quotes (") in the text parameter:

    text = Что бы ни # @param

    Should be:

    text = "Что бы ни" # @param

    Thanks!

    opened by Jakeukalane 1
Releases(v1.1.0)
Owner
AI Forever
Creating ML for the future. AI projects you already know. We are non-profit organization with members from all over the world.
AI Forever
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022