Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Overview

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform

Figure 2 This repository is the implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform" (ICCV 2021). Our code is based on CompressAI.

Abstract: We propose a versatile deep image compression network based on Spatial Feature Transform (SFT), which takes a source image and a corresponding quality map as inputs and produce a compressed image with variable rates. Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps. In addition, the proposed framework allows us to perform task-aware image compressions for various tasks, e.g., classification, by efficiently estimating optimized quality maps specific to target tasks for our encoding network. This is even possible with a pretrained network without learning separate models for individual tasks. Our algorithm achieves outstanding rate-distortion trade-off compared to the approaches based on multiple models that are optimized separately for several different target rates. At the same level of compression, the proposed approach successfully improves performance on image classification and text region quality preservation via task-aware quality map estimation without additional model training.

Installation

We tested our code in ubuntu 16.04, g++ 8.4.0, cuda 10.1, python 3.8.8, pytorch 1.7.1. A C++ 17 compiler is required to use the Range Asymmetric Numeral System implementation.

  1. Check your g++ version >= 7. If not, please update it first and make sure to use the updated version.

    • $ g++ --version
  2. Set up the python environment (Python 3.8).

  3. Install needed packages.

    • $ pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    • $ pip install -r requirements.txt
    • If some errors occur in installing CompressAI, please install it yourself. It is for the entropy coder.

Dataset

  1. (Training set) Download the following files and decompress them.

    • 2014 Train images [83K/13GB]
    • 2014 Train/Val annotations [241MB]
      • instances_train2014.json
    • 2017 Train images [118K/18GB]
    • 2017 Train/Val annotations [241MB]
      • instances_train2017.json
  2. (Test set) Download Kodak dataset.

  3. Make a directory of structure as follows for the datasets.

├── your_dataset_root
    ├── coco
        |── annotations
            ├── instances_train2014.json
            └── instances_train2017.json
        ├── train2014
        └── train2017
    └── kodak
            ├── 1.png
            ├── ...
  1. Run following command in scripts directory.
    • $ ./prepare.sh your_dataset_root/coco your_dataset_root/kodak
    • trainset_coco.csv and kodak.csv will be created in data directory.

Training

Configuration

We used the same configuration as ./configs/config.yaml to train our model. You can change it as you want. We expect that larger number of training iteration will lead to the better performance.

Train

$ python train.py --config=./configs/config.yaml --name=your_instance_name
The checkpoints of the model will be saved in ./results/your_instance_name/snapshots.
Training for 2M iterations will take about 2-3 weeks on a single GPU like Titan Xp. At least 12GB GPU memory is needed for the default training setting.

Resume from a checkpoint

$ python train.py --resume=./results/your_instance_name/snapshots/your_snapshot_name.pt
By default, the original configuration of the checkpoint ./results/your_instance_name/config.yaml will be used.

Evaluation

$ python eval.py --snapshot=./results/your_instance_name/snapshots/your_snapshot_name.pt --testset=./data/kodak.csv

Final evaluation results

[ Test-1 ] Total: 0.5104 | Real BPP: 0.2362 | BPP: 0.2348 | PSNR: 29.5285 | MS-SSIM: 0.9360 | Aux: 93 | Enc Time: 0.2403s | Dec Time: 0.0356s
[ Test 0 ] Total: 0.2326 | Real BPP: 0.0912 | BPP: 0.0902 | PSNR: 27.1140 | MS-SSIM: 0.8976 | Aux: 93 | Enc Time: 0.2399s | Dec Time: 0.0345s
[ Test 1 ] Total: 0.2971 | Real BPP: 0.1187 | BPP: 0.1176 | PSNR: 27.9824 | MS-SSIM: 0.9159 | Aux: 93 | Enc Time: 0.2460s | Dec Time: 0.0347s
[ Test 2 ] Total: 0.3779 | Real BPP: 0.1559 | BPP: 0.1547 | PSNR: 28.8982 | MS-SSIM: 0.9323 | Aux: 93 | Enc Time: 0.2564s | Dec Time: 0.0370s
[ Test 3 ] Total: 0.4763 | Real BPP: 0.2058 | BPP: 0.2045 | PSNR: 29.9052 | MS-SSIM: 0.9464 | Aux: 93 | Enc Time: 0.2553s | Dec Time: 0.0359s
[ Test 4 ] Total: 0.5956 | Real BPP: 0.2712 | BPP: 0.2697 | PSNR: 30.9739 | MS-SSIM: 0.9582 | Aux: 93 | Enc Time: 0.2548s | Dec Time: 0.0354s
[ Test 5 ] Total: 0.7380 | Real BPP: 0.3558 | BPP: 0.3541 | PSNR: 32.1140 | MS-SSIM: 0.9678 | Aux: 93 | Enc Time: 0.2598s | Dec Time: 0.0358s
[ Test 6 ] Total: 0.9059 | Real BPP: 0.4567 | BPP: 0.4548 | PSNR: 33.2801 | MS-SSIM: 0.9752 | Aux: 93 | Enc Time: 0.2596s | Dec Time: 0.0361s
[ Test 7 ] Total: 1.1050 | Real BPP: 0.5802 | BPP: 0.5780 | PSNR: 34.4822 | MS-SSIM: 0.9811 | Aux: 93 | Enc Time: 0.2590s | Dec Time: 0.0364s
[ Test 8 ] Total: 1.3457 | Real BPP: 0.7121 | BPP: 0.7095 | PSNR: 35.5609 | MS-SSIM: 0.9852 | Aux: 93 | Enc Time: 0.2569s | Dec Time: 0.0367s
[ Test 9 ] Total: 1.6392 | Real BPP: 0.8620 | BPP: 0.8590 | PSNR: 36.5931 | MS-SSIM: 0.9884 | Aux: 93 | Enc Time: 0.2553s | Dec Time: 0.0371s
[ Test10 ] Total: 2.0116 | Real BPP: 1.0179 | BPP: 1.0145 | PSNR: 37.4660 | MS-SSIM: 0.9907 | Aux: 93 | Enc Time: 0.2644s | Dec Time: 0.0376s
[ Test ] Total mean: 0.8841 | Enc Time: 0.2540s | Dec Time: 0.0361s
  • [ TestN ] means to use a uniform quality map of (N/10) value for evaluation.
    • For example, in the case of [ Test8 ], a uniform quality map of 0.8 is used.
  • [ Test-1 ] means to use pre-defined non-uniform quality maps for evaluation.
  • Bpp is the theoretical average bpp calculated by the trained probability model.
  • Real Bpp is the real average bpp for the saved file including quantized latent representations and metadata.
    • All bpps reported in the paper are Real Bpp.
  • Total is the average loss value.

Classification-aware compression

Dataset

We made a test set of ImageNet dataset by sampling 102 categories and choosing 5 images per a category randomly.

  1. Prepare the original ImageNet validation set ILSVRC2012_img_val.
  2. Run following command in scripts directory.
    • $ ./prepare_imagenet.sh your_dataset_root/ILSVRC2012_img_val
    • imagenet_subset.csv will be created in data directory.

Running

$ python classification_aware.py --snapshot=./results/your_instance_name/snapshots/your_snapshot_name.pt
A result plot ./classificatoin_result.png will be generated.

Citation

@inproceedings{song2021variablerate,
  title={Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform}, 
  author={Song, Myungseo and Choi, Jinyoung and Han, Bohyung},
  booktitle={ICCV},
  year={2021}
}
Owner
Myungseo Song
Myungseo Song
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023