Text to image synthesis using thought vectors

Overview

Text To Image Synthesis Using Thought Vectors

Join the chat at https://gitter.im/text-to-image/Lobby

This is an experimental tensorflow implementation of synthesizing images from captions using Skip Thought Vectors. The images are synthesized using the GAN-CLS Algorithm from the paper Generative Adversarial Text-to-Image Synthesis. This implementation is built on top of the excellent DCGAN in Tensorflow. The following is the model architecture. The blue bars represent the Skip Thought Vectors for the captions.

Model architecture

Image Source : Generative Adversarial Text-to-Image Synthesis Paper

Requirements

Datasets

  • All the steps below for downloading the datasets and models can be performed automatically by running python download_datasets.py. Several gigabytes of files will be downloaded and extracted.
  • The model is currently trained on the flowers dataset. Download the images from this link and save them in Data/flowers/jpg. Also download the captions from this link. Extract the archive, copy the text_c10 folder and paste it in Data/flowers.
  • Download the pretrained models and vocabulary for skip thought vectors as per the instructions given here. Save the downloaded files in Data/skipthoughts.
  • Make empty directories in Data, Data/samples, Data/val_samples and Data/Models. They will be used for sampling the generated images and saving the trained models.

Usage

  • Data Processing : Extract the skip thought vectors for the flowers data set using :
python data_loader.py --data_set="flowers"
  • Training

    • Basic usage python train.py --data_set="flowers"
    • Options
      • z_dim: Noise Dimension. Default is 100.
      • t_dim: Text feature dimension. Default is 256.
      • batch_size: Batch Size. Default is 64.
      • image_size: Image dimension. Default is 64.
      • gf_dim: Number of conv in the first layer generator. Default is 64.
      • df_dim: Number of conv in the first layer discriminator. Default is 64.
      • gfc_dim: Dimension of gen untis for for fully connected layer. Default is 1024.
      • caption_vector_length: Length of the caption vector. Default is 1024.
      • data_dir: Data Directory. Default is Data/.
      • learning_rate: Learning Rate. Default is 0.0002.
      • beta1: Momentum for adam update. Default is 0.5.
      • epochs: Max number of epochs. Default is 600.
      • resume_model: Resume training from a pretrained model path.
      • data_set: Data Set to train on. Default is flowers.
  • Generating Images from Captions

    • Write the captions in text file, and save it as Data/sample_captions.txt. Generate the skip thought vectors for these captions using:
    python generate_thought_vectors.py --caption_file="Data/sample_captions.txt"
    
    • Generate the Images for the thought vectors using:
    python generate_images.py --model_path=<path to the trained model> --n_images=8
    

    n_images specifies the number of images to be generated per caption. The generated images will be saved in Data/val_samples/. python generate_images.py --help for more options.

Sample Images Generated

Following are the images generated by the generative model from the captions.

Caption Generated Images
the flower shown has yellow anther red pistil and bright red petals
this flower has petals that are yellow, white and purple and has dark lines
the petals on this flower are white with a yellow center
this flower has a lot of small round pink petals.
this flower is orange in color, and has petals that are ruffled and rounded.
the flower has yellow petals and the center of it is brown

Implementation Details

  • Only the uni-skip vectors from the skip thought vectors are used. I have not tried training the model with combine-skip vectors.
  • The model was trained for around 200 epochs on a GPU. This took roughly 2-3 days.
  • The images generated are 64 x 64 in dimension.
  • While processing the batches before training, the images are flipped horizontally with a probability of 0.5.
  • The train-val split is 0.75.

Pre-trained Models

  • Download the pretrained model from here and save it in Data/Models. Use this path for generating the images.

TODO

  • Train the model on the MS-COCO data set, and generate more generic images.
  • Try different embedding options for captions(other than skip thought vectors). Also try to train the caption embedding RNN along with the GAN-CLS model.

References

Alternate Implementations

License

MIT

Owner
Paarth Neekhara
PhD student, Computer Science, UCSD
Paarth Neekhara
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022