The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

Overview

pretraining-learning-curves

This is the repository for the paper When Do You Need Billions of Words of Pretraining Data?

Edge Probing

We use jiant1 for our edge probing experiments. This tutorial can help you set up the environment and get started with jiant.

Below is an example of how to reproduce our dependency labelling experiment with roberta-base-1B-3, which is one of the MiniBERTas we probe.

Download and Preprocess the Data

The commands below help you get and tokenize the data for the dependency labelling task. Remember to change directory to the root of the jiant and activate your jiant environment first.

mkdir data

mkdir data/edges

probing/data/get_ud_data.sh data/edges/dep_ewt

python probing/get_edge_data_labels.py -o data/edges/dep_ewt/labels.txt -i data/edges/dep_ewt/*.json

python probing/retokenize_edge_data.py -t nyu-mll/roberta-base-1B-3  data/edges/dep_ewt/*.json

Run the Experiment

If you have not used jiant before, you will probably need to set two critical environment variables:

$JIANT_PROJECT_PREFIX: the directory where logs and model checkpoints will be saved.

$JIANT_DATA_DIR: The data directory. Set it to PATH/TO/LOCAL/REPO/data

Now, you are ready to run the probing program:

python main.py –config_file jiant/config/edgeprobe/edgeprobe_miniberta.conf\ 
–overrides “exp_name=DL_tutorial, target_tasks=edges-dep-ud-ewt,\
transformers_output_mode=mix, input_module=nyu-mll/roberta-base-1B-3,\ 
target_train_val_interval=1000, batch_size=32, target_train_max_vals=130, lr=0.0005”

A logging message will be printed out after each validation. You should expect validation f1 to exceed 90 in only a few validations.

The final validation result will be printed after the experiment is finished, and can also be found in $JIANT_PROJECT_PREFIX/DL_tutorial/results.tsv. You should expect the final validation f1 to be around 95.

Minimum Description Length Probing with Edge Probing tasks

For this experiment, we use this fork of jiant1.

BLiMP

The code for our BLiMP experiments can be found here. You can already check results for our MiniBERTas.

If you want to rerun experiments on your own, we have prepared BLiMP data so you only need to include all dependencies for the environment and run scripts following the tutorial here. Note that when intalling dependencies CUDA version could be a problem when installing mxnet.

SuperGLUE

We use jiant2 for our SuperGLUE experiments. Get started with jiant2 using this guide and examples.

Owner
ML² AT CILVR
The Machine Learning for Language Group at NYU CILVR
ML² AT CILVR
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022