The official repository for Deep Image Matting with Flexible Guidance Input

Overview

FGI-Matting

The official repository for Deep Image Matting with Flexible Guidance Input.

Paper: https://arxiv.org/abs/2110.10898

image

all

Requirements

  • easydict
  • numpy
  • opencv-python
  • Pillow
  • PyQt5
  • scikit-image
  • scipy
  • toml
  • torch>=1.5.0
  • torchvision

Models and supplementary data for DIM test set(Composition-1k) and Distinctions-646 test set

Google drive: https://drive.google.com/drive/folders/13qnlXUSKS5HfkfvzdMKAv7FvJ6YV_wPK?usp=sharing
百度网盘: https://pan.baidu.com/s/1ZYcbwyCIrL6G9t7pkCIBYw 提取码: zjtj

  • Weight_DIM.pth The model trained with Adobe matting dataset.

  • Weight_D646.pth The model trained with Distincions-646 dataset.

  • DIM_test_supp_data.zip Scribblemaps and Clickmaps for DIM test set.

  • D-646_test_supp_data.zip Scribblemaps and Clickmaps for Distinctions-646 test set.

Place Weight_DIM.pth and Weight_D646.pth in ./checkpoints.
Edit ./config/FGI_config to modify the path of the testset and choose the checkpoint name.

Test on DIM test set(Composition-1k)

Methods SAD MSE Grad Conn
Trimap test 30.19 0.0061 13.07 26.66
Scribblemap test 32.86 0.0090 14.18 29.09
Clickmap test 34.67 0.0112 15.45 30.96
No guidance test 36.36 0.0141 15.23 32.76

"checkpoint" in ./config/FGI_config.toml should be "Weight_DIM".
bash test.sh
Modify "guidancemap_phase" in ./config/FGI_config.toml to test on trimap, scribblemap, clickmap and No_guidance.
For further test, please use the code in ./DIM_evaluation_code and the predicted alpha mattes in ./alpha_pred.

Test on Distinctions-646 test set(Not appear in the paper)

Methods SAD MSE Grad Conn
Trimap test 28.90 0.0105 24.67 27.40
Scribblemap test 33.22 0.0131 26.93 31.38
Clickmap test 34.97 0.0146 27.60 33.11
No guidance test 36.83 0.0156 28.28 34.90

"checkpoint" in ./config/FGI_config.toml should be "Weight_D646".
bash test.sh
Modify "guidancemap_phase" in ./config/FGI_config.toml to test on trimap, scribblemap, clickmap and No_guidance.
For further test, please use the code in ./DIM_evaluation_code and the predicted alpha mattes in ./alpha_pred.

The QT Demo

Copy one of the pth file and rename it "Weight_qt_in_use.pth", also place it in ./checkpoints.
Run test_one_img_qt.py. Try images in ./testimg. It will use GPU if avaliable, otherwise it will use CPU.

demo

I recommend to use the one trained on DIM dataset.
Have fun :D

Acknowledgment

GCA-Matting: https://github.com/Yaoyi-Li/GCA-Matting

Owner
Hang Cheng
Hang Cheng
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022