Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Overview

Open Compound Domain Adaptation

[Project] [Paper] [Demo] [Blog]

Overview

Open Compound Domain Adaptation (OCDA) is the author's re-implementation of the compound domain adaptator described in:
"Open Compound Domain Adaptation"
Ziwei Liu*Zhongqi Miao*Xingang PanXiaohang ZhanDahua LinStella X. YuBoqing Gong  (CUHK & Berkeley & Google)  in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020, Oral Presentation

Further information please contact Zhongqi Miao and Ziwei Liu.

Requirements

Updates:

  • 11/09/2020: We have uploaded C-Faces dataset. Corresponding codes will be updated shortly. Please be patient. Thank you very much!
  • 06/16/2020: We have released C-Digits dataset and corresponding weights.

Data Preparation

[OCDA Datasets]

First, please download C-Digits, save it to a directory, and change the dataset root in the config file accordingly. The file contains MNIST, MNIST-M, SVHN, SVHN-bal, and SynNum.

For C-Faces, please download Multi-PIE first. Since it is a proprietary dataset, we can only privide the data list we used during training here. We will update the dataset function accordingly.

Getting Started (Training & Testing)

C-Digits

To run experiments for both training and evaluation on the C-Digits datasets (SVHN -> Multi):

python main.py --config ./config svhn_bal_to_multi.yaml

After training is completed, the same command will automatically evaluate the trained models.

C-Faces

  • We will be releasing code for C-Faces experiements very soon.

C-Driving

Reproduced Benchmarks and Model Zoo

NOTE: All reproduced weights need to be decompressed into results directory:

OpenCompoundedDomainAdaptation-OCDA
    |--results

C-Digits (Results may currently have variations.)

Source MNIST (C) MNIST-M (C) USPS (C) SymNum (O) Avg. Acc Download
SVHN 89.62 64.53 81.17 87.86 80.80 model

License and Citation

The use of this software is released under BSD-3.

@inproceedings{compounddomainadaptation,
  title={Open Compound Domain Adaptation},
  author={Liu, Ziwei and Miao, Zhongqi and Pan, Xingang and Zhan, Xiaohang and Lin, Dahua and Yu, Stella X. and Gong, Boqing},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
Xi Dongbo 78 Nov 29, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022