An open source Jetson Nano baseboard and tools to design your own.

Related tags

Deep Learninghardware
Overview

My Jetson Nano Baseboard

Render of My Jetson Nano Baseboard

Picture of My Jetson Nano Baseboard

This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It also repurposes some of the Jetson Nano’s interface signals for simple beginner projects.

This baseboard, as designed, contains:

  • A 5V, 4A DC barrel jack
  • 4 USB 2.0 connectors
  • An HDMI connector
  • A UART-to-USB bridge
  • A debug USB
  • A 40-pin GPIO
  • A servo header
  • Three user-interactive buttons (power, reset, and force recovery)
  • A flex connector for an OLED display

Use these files to kickstart your own application-specific baseboard or implement some quick and easy projects!

Quick Start

You only need a computer to get started right now! For a more in-depth setup guide, check out docs/setup.md.

  1. Install the appropriate version of KiCAD, an open source schematic and layout design program, for your operating system here.

  2. Download this GitHub repository either as a ZIP or on the command line.

  3. Save the following symbol and footprint libraries to the “Design Files/Libraries” folder (you may have to make an account – alternatively, if you want the practice, you could try making them yourself):

    1. B3SL-1002P
    2. TPD4E02B04DQAR
    3. 3-1734592-0
    4. DC-005-2.0A
    5. ACM2012-201-2P-T001
    6. 10029449-111RLF
    7. 2309413-1
  4. Open the project (.pro) file in KiCAD.

  5. Add the symbol and footprint libraries as project-specific to your KiCAD program, following this guide. You will know that the libraries are correctly loaded when there are no more boxes with question marks.

  6. You are now set up to tinker with the files and launch your own hardware designs!

Be sure to download the Jetson Nano Product Design Guide here (NVIDIA Developer account required) to help you with your design.

If you want to make your boards and test them, you’ll need the Jetson Nano module (not included, can be bought as part of the developer kit here). It is also helpful to have electronics equipment like an oscilloscope, a multimeter, and a soldering iron.

Questions and Improvements

If you have a suggestion, please open an issue on GitHub.

Please share your projects with us on the Jetson Developer Forums.

Comments
  • Servo PWM signal does not switch logic levels, remains high

    Servo PWM signal does not switch logic levels, remains high

    Problem When running the sampleproj/servo_pwm.py script, SERVO_PWM remains high, even as the GPIO07 pin outputs a PWM signal.

    Release A00, no modifications

    Observed Behavior Servo PWM remains high even when PWM script is run.

    GPIO07 at 40-pin header: gpio7 configured0

    SERVO_PWM at servo header: gpio 7

    Root Cause Theory The pullup could be too strong; the transistor connection may not be consistent across boards. This is another issue that switching to a larger package transistor should fix.

    Suggested Next Steps

    • Switch to larger package transistor (as in issue #5 & 2)
    • Test additional boards to ensure transistor connection remains consistent
    bug A01 Fix 
    opened by wolframalexa 1
  • Fails sleep/wake software cycle

    Fails sleep/wake software cycle

    Problem Board cannot be wake from software; the physical button must be pushed.

    Release A00, no modifications

    Observed Behavior When running the validation/sleep_func.sh script, the device does not wake until the power button is pushed.

    Root Cause Theory An issue with how L4T interacts with the baseboard.

    Suggested Next Steps

    • Probe power logic signals to ensure sequencing is correct
    • Read L4T documentation for power design
    bug 
    opened by wolframalexa 1
  • OLED display does not fit in specified connector

    OLED display does not fit in specified connector

    Problem The specified OLED display does not fit in the specified connector. Users cannot use the display.

    Release A00, no modifications

    Observed Behavior The connector is too small for the display.

    Root Cause Theory Mistakes were made.

    Suggested Next Steps Choose new connector for display.

    bug A01 Fix 
    opened by wolframalexa 1
  • Fan PWM signal not in compliance

    Fan PWM signal not in compliance

    Problem Users cannot use a fan, because the fan PWM signal is not in electrical compliance.

    Observed Behavior GPIO14 provides a nice PWM signal, but the signal becomes less crisp as it goes through the level shifter. In both images below, the blue line is the FAN_PWM_LS node. Yellow: left = GPIO14, right = FAN_PWM_INV.

    image image

    The transistor Q3 should invert the PWM signal, but does not appear to do so.

    Root Cause Theory At 20kHz, it is unlikely the fan signal is switching too fast for the transistor. It may be due to a transistor misalignment; switch from the DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.

    Suggested Next Steps Ask a more experienced engineer. May need a larger pullup, or more power control.

    bug A01 Fix 
    opened by wolframalexa 1
  • Some USB 2.0 type A ports are not functional

    Some USB 2.0 type A ports are not functional

    Problem Some USB ports on some boards do not respond when a USB mouse or keyboard is plugged into them.

    Observed Behavior When a USB mouse or keyboard is plugged into one of the four type A ports, it occasionally does not work (the pointer does not move, no text appears on screen). This hinders the ability for the user to interact with the display, and to use the USB devices they need.

    Root Cause Theory This is only present on some ports on some boards; it could be a manufacturing or hub chip error.

    Suggested Next Steps

    • Visually check all USB components to ensure there is no damage
    • Ensure hub chip is strapped correctly
    • Ensure USB layout guidelines are followed for signal integrity
    bug A01 Fix 
    opened by wolframalexa 1
  • Low-resolution HDMI (1280x720)

    Low-resolution HDMI (1280x720)

    Problem The maximum HDMI resolution seems to be 1280x720, whereas the Jetson Nano achieves a resolution of 2560x1440. As a result, the display appears zoomed in.

    Release A00, no modifications

    Observed Behavior

    • This is present on all boards, with the same module as on the official baseboard - probably a hardware design issue, and not a software issue
    • The resolution on the official Jetson Nano is twice that of "My Jetson Nano Baseboard"

    Root Cause Theory Resistor values may need to be tuned for better resolutions. Additionally, an EEPROM may be read to confirm HDMI resolution.

    Suggested Next Steps Investigate L4T behavior with regard to HDMI and resistor tuning on CEC line.

    bug A01 Fix 
    opened by wolframalexa 1
  • Power LED does not light up on some boards

    Power LED does not light up on some boards

    Problem On some boards, the power LED D6 does not light, even though the board completes its power-on sequence and has booted normally.

    Release A00, no modifications

    Observed Behavior

    • The LED is the correct direction
    • The board completes its power on sequence and the software functions as expected
    • GPIO04 remains LOW at 0.6V, even though it should be driven HIGH upon power-up
    • There is no measured voltage drop across R32
    • There is an insufficient voltage drop across D6

    Root Cause Theory The gate threshold voltage varies depending on the individual transistor. It could be that this transistor has a higher V_GS and does not turn on when GPIO04 is at 0.6V. Additionally, the transistor Q7 could be misaligned.

    Suggested Next Steps

    • Investigate behavior of GPIO04, which should be HIGH upon power-on. Remove R31 to ensure no loading effects from transistor.
    • Change all transistors DMN26D0UFB4-7 to the DMN26D0UT-7, which is in a larger SOT-523 package, to avoid misalignments.
    bug A01 Fix 
    opened by wolframalexa 1
  • Make silkscreen more readable

    Make silkscreen more readable

    • Increase silkscreen size from 0.5x0.5mm to 0.438x0.7mm to make the text more readable.
    • Add polarity for all ICs and polarized components to aid in soldering
    • Add silkscreen on front for 40-pin header
    enhancement A01 Fix 
    opened by wolframalexa 0
Releases(A01)
  • A01(Aug 12, 2021)

    After having manufactured the boards and validated them, we're fixing some functionality. Here are the changes, which you can read about in our issues:

    • Fix footprints (#11):
      • DC Jack flipped
      • GPIO header flipped (pin 1 should be pin 2)
      • USB footprint with soldermask (#4)
      • New OLED display connector & display (#6)
    • Usability enhancements, with more readable silkscreen (#10)
    • BOM errors:
      • SODIMM connector (#9)
      • HDMI current limiting resistor, which allows for correct resolution (#3)
      • Larger transistor footprint to avoid misalignments (#8, #5)
    • Fix pullup
      • Add pullup to GPIO04 (#2)
    Source code(tar.gz)
    Source code(zip)
  • A00(Jul 28, 2021)

Owner
NVIDIA AI IOT
NVIDIA AI IOT
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022