A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

Overview

MPItrampoline

  • MPI wrapper library: GitHub CI
  • MPI trampoline library: GitHub CI
  • MPI integration tests: GitHub CI

MPI is the de-facto standard for inter-node communication on HPC systems, and has been for the past 25 years. While highly successful, MPI is a standard for source code (it defines an API), and is not a standard defining binary compatibility (it does not define an ABI). This means that applications running on HPC systems need to be compiled anew on every system. This is tedious, since the software that is available on every HPC system is slightly different.

This project attempts to remedy this. It defines an ABI for MPI, and provides an MPI implementation based on this ABI. That is, MPItrampoline does not implement any MPI functions itself, it only forwards them to a "real" implementation via this ABI. The advantage is that one can produce "portable" applications that can use any given MPI implementation. For example, this will make it possible to build external packages for Julia via Yggdrasil that run efficiently on almost any HPC system.

A small and simple MPIwrapper library is used to provide this ABI for any given MPI installation. MPIwrapper needs to be compiled for each MPI installation that is to be used with MPItrampoline, but this is quick and easy.

Successfully Tested

  • Debian 11.0 via Docker (MPICH; arm32v5, arm32v7, arm64v8, mips64le, ppc64le, riscv64; C/C++ only)
  • Debian 11.0 via Docker (MPICH; i386, x86-64)
  • macOS laptop (MPICH, OpenMPI; x86-64)
  • macOS via Github Actions (OpenMPI; x86-64)
  • Ubuntu 20.04 via Docker (MPICH; x86-64)
  • Ubuntu 20.04 via Github Actions (MPICH, OpenMPI; x86-64)
  • Blue Waters, HPC system at the NCSA (Cray MPICH; x86-64)
  • Graham, HPC system at Compute Canada (Intel MPI; x86-64)
  • Marconi A3, HPC system at Cineca (Intel MPI; x86-64)
  • Niagara, HPC system at Compute Canada (OpenMPI; x86-64)
  • Summit, HPC system at ORNL (Spectrum MPI; IBM POWER 9)
  • Symmetry, in-house HPC system at the Perimeter Institute (MPICH, OpenMPI; x86-64)

Workflow

Preparing an HPC system

Install MPIwrapper, wrapping the MPI installation you want to use there. You can install MPIwrapper multiple times if you want to wrap more than one MPI implementation.

This is possibly as simple as

cmake -S . -B build -DMPIEXEC_EXECUTABLE=mpiexec -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_INSTALL_PREFIX=$HOME/mpiwrapper
cmake --build build
cmake --install build

but nothing is ever simple on an HPC system. It might be necessary to load certain modules, or to specify more cmake MPI configuration options.

The MPIwrapper libraries remain on the HPC system, they are installed independently of any application.

Building an application

Build your application as usual, using MPItrampline as MPI library.

Running an application

At startup time, MPItrampoline needs to be told which MPIwrapper library to use. This is done via the environment variable MPITRAMPOLINE_LIB. You also need to point MPItrampoline's mpiexec to a respective wrapper created by MPIwrapper, using the environment variable MPITRAMPOLINE_MPIEXEC.

For example:

env MPITRAMPOLINE_MPIEXEC=$HOME/mpiwrapper/bin/mpiwrapper-mpiexec MPITRAMPOLINE_LIB=$HOME/mpiwrapper/lib/libmpiwrapper.so mpiexec -n 4 ./your-application

The mpiexec you run here needs to be the one provided by MPItrampoline.

Current state

MPItrampoline uses the C preprocessor to create wrapper functions for each MPI function. This is how MPI_Send is wrapped:

FUNCTION(int, Send,
         (const void *buf, int count, MT(Datatype) datatype, int dest, int tag,
          MT(Comm) comm),
         (buf, count, (MP(Datatype))datatype, dest, tag, (MP(Comm))comm))

Unfortunately, MPItrampoline does not yet wrap the Fortran API. Your help is welcome.

Certain MPI types, constants, and functions are difficult to wrap. Theoretically, there could be MPI libraries where it is not possible to implement the current MPI ABI. If you encounter this, please let me know -- maybe there is a work-around.

Comments
  • Add support for MPI profiling interface

    Add support for MPI profiling interface

    Each standard MPI function can be called with an MPI_ or PMPI_ prefix (quoting from https://www.open-mpi.org/faq/?category=perftools#PMPI), I think MPItrampoline doesn't currently support the PMPI_ calls.

    opened by ocaisa 6
  • Supporting `MPIX_Query_cuda_support()`

    Supporting `MPIX_Query_cuda_support()`

    While not part of the standard, MPIX_Query_cuda_support() is available in a number of MPI implementations (see https://github.com/pmodels/mpich/pull/4741). It's also being used by a number of applications (and hopefully that will grow, see my issue at https://github.com/lammps/lammps/issues/3140 which links back to the support in GROMACS). This would be a valuable inclusion in MPItrampoline since it would then be able to handle the runtime detection of CUDA support in the MPI implementation.

    opened by ocaisa 6
  • Allow overriding default compilation options

    Allow overriding default compilation options

    Currently default compilation options are set during the build of MPItrampoline, it would probably be useful to be able to fully override these, e.g.,

    exec ${MPITRAMPOLINE_CC:[email protected]_C_COMPILER@} ${CFLAGS:-"@CMAKE_C_FLAGS@"} [email protected]_INSTALL_PREFIX@/@CMAKE_INSTALL_INCLUDEDIR@ @LINK_FLAGS@ [email protected]_INSTALL_PREFIX@/@CMAKE_INSTALL_LIBDIR@ -Wl,-rpath,@CMAKE_INSTALL_PREFIX@/@CMAKE_INSTALL_LIBDIR@ "$@" -lmpi -ldl
    
    opened by ocaisa 5
  • Allow use of a fallback/default value for `MPITRAMPOLINE_MPIEXEC`

    Allow use of a fallback/default value for `MPITRAMPOLINE_MPIEXEC`

    It's possible to configure a default MPI library with -DMPITRAMPOLINE_DEFAULT_LIB=XXX, it would be good to be able to also configure a default mpiexec (-DMPITRAMPOLINE_DEFAULT_MPIEXEC=XXX) so that one can have a fully functional fallback in place at build time.

    opened by ocaisa 3
  • Incomplete installation

    Incomplete installation

    Hello ! I am looking at installing MPItrampoline, and following the steps outlined in the README.md, I cannot access files later referenced.

    For instance, on Summit at ORNL, using the following script:

    INSTALLDIR=$HOME/mpiwrapper
    
    module load cmake/3.18
    module load gcc
    
    cmake -S . -B build -DMPIEXEC_EXECUTABLE=mpiexec \
                                   -DCMAKE_BUILD_TYPE=RelWithDebInfo \
                                   -DCMAKE_INSTALL_PREFIX=$INSTALLDIR
    cmake --build build
    cmake --install build
    

    The following installation is generated:

    $ tree mpiwrapper/
    mpiwrapper/
    |-- bin
    |   |-- mpicc
    |   |-- mpicxx
    |   |-- mpiexec
    |   |-- mpifc
    |   `-- mpifort
    |-- include
    |   |-- mpi.h
    |   |-- mpi.mod
    |   |-- mpi_declarations.h
    |   |-- mpi_declarations_fortran.h
    |   |-- mpi_declarations_fortran90.h
    |   |-- mpi_defaults.h
    |   |-- mpi_f08.mod
    |   |-- mpi_version.h
    |   |-- mpiabi.h
    |   |-- mpiabif.h
    |   |-- mpif.h
    |   `-- mpio.h
    |-- lib
    |   |-- cmake
    |   |   `-- MPItrampoline
    |   |       |-- MPItrampolineConfig.cmake
    |   |       |-- MPItrampolineConfigVersion.cmake
    |   |       |-- MPItrampolineTargets-relwithdebinfo.cmake
    |   |       `-- MPItrampolineTargets.cmake
    |   `-- pkgconfig
    |       `-- MPItrampoline.pc
    `-- lib64
        |-- libmpi.a
        `-- libmpifort.a
    
    7 directories, 24 files
    

    The README.md dictates to use the wrapped libraries, but no shared libraries are available here. I looked through the options of the CMakeLists.txt but the only one defined in the project is the fortran flag.

    Am I missing something ?

    opened by spoutn1k 2
  •  Issues building Global Arrays

    Issues building Global Arrays

    I'm trying to build the Global Arrays library with MPItrampoline and have run into some issues. This package is a dependency for Molpro and several other computational chemistry applications. Any assistance that you can provide to get it working would be greatly appreciated.

    The compilation fails at https://github.com/GlobalArrays/ga/blob/f4016b869dfd1a2b2856f74a73dd9452dbbc8ae4/comex/src-mpi-pr/comex.c#L4968 with the error message:

    libtool: compile:  mpicc -DHAVE_CONFIG_H -I. -I./src-common -I./src-mpi-pr -g -O2 -MT src-mpi-pr/comex.lo -MD -MP -MF src-mpi-pr/.deps/comex.Tpo -c src-mpi-pr/comex.c -o src-mpi-pr/comex.o
    src-mpi-pr/comex.c: In function ‘str_mpi_retval’:
    src-mpi-pr/comex.c:4932:9: error: case label does not reduce to an integer constant
             case MPI_SUCCESS       : msg = "MPI_SUCCESS"; break;
             ^
    

    Steps to reproduce:

    git clone -b develop https://github.com/GlobalArrays/ga
    cd ga
    ./autogen.sh
    ./configure --with-mpi-pr --with-blas=no --with-lapack=no --with-scalapack=no --disable-f77
    make
    

    I've tried both the develop and master branches.

    There are lots of configurations which can be used, we're most interested in the recommended port which uses MPI-1 with progress ranks (--with-mpi-pr) but I tried several other configurations without success.

    I'm not sure whether it's an MPItrampoline issue or whether it's non-standard use of MPI within Global Arrays.

    I've attached the full output from build build-ga.txt

    I've tried on

    • RHEL 7.9 with gcc 4.8.5
    • Ubuntu 22.04 with gcc 11.3.0
    opened by nick-wilson 9
  • Issues building CP2K

    Issues building CP2K

    I thought I would give this a full test with Fortran, and CP2K is a good benchmark for that. The build (v8.2) is failing with:

    /project/60005/easybuild/build/CP2K/8.2/gmtfbf-2021a/cp2k-8.2/exts/dbcsr/src/mpi/dbcsr_mpiwrap.F:1669:21:
    
     1669 |       CALL mpi_bcast(msg, msglen, MPI_LOGICAL, source, gid, ierr)
          |                     1
    ......
     3160 |       CALL mpi_bcast(msg, msglen, ${mpi_type1}$, source, gid, ierr)
          |                     2
    Error: Type mismatch between actual argument at (1) and actual argument at (2) (LOGICAL(4)/COMPLEX(4)).
    
    opened by ocaisa 24
  • Building shared and static libraries at once

    Building shared and static libraries at once

    Currently the default behaviour is to only build static libraries. It might be good build both static and shared libraries since then if libmpi.so is in the default search path it is not selected over the library from MPItrampoline (MPItrampoline would shadow libmpi.so and libmpi.a).

    opened by ocaisa 4
Releases(v5.2.0)
Owner
Erik Schnetter
Erik Schnetter
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 04, 2023
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022