A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

Overview

MPItrampoline

  • MPI wrapper library: GitHub CI
  • MPI trampoline library: GitHub CI
  • MPI integration tests: GitHub CI

MPI is the de-facto standard for inter-node communication on HPC systems, and has been for the past 25 years. While highly successful, MPI is a standard for source code (it defines an API), and is not a standard defining binary compatibility (it does not define an ABI). This means that applications running on HPC systems need to be compiled anew on every system. This is tedious, since the software that is available on every HPC system is slightly different.

This project attempts to remedy this. It defines an ABI for MPI, and provides an MPI implementation based on this ABI. That is, MPItrampoline does not implement any MPI functions itself, it only forwards them to a "real" implementation via this ABI. The advantage is that one can produce "portable" applications that can use any given MPI implementation. For example, this will make it possible to build external packages for Julia via Yggdrasil that run efficiently on almost any HPC system.

A small and simple MPIwrapper library is used to provide this ABI for any given MPI installation. MPIwrapper needs to be compiled for each MPI installation that is to be used with MPItrampoline, but this is quick and easy.

Successfully Tested

  • Debian 11.0 via Docker (MPICH; arm32v5, arm32v7, arm64v8, mips64le, ppc64le, riscv64; C/C++ only)
  • Debian 11.0 via Docker (MPICH; i386, x86-64)
  • macOS laptop (MPICH, OpenMPI; x86-64)
  • macOS via Github Actions (OpenMPI; x86-64)
  • Ubuntu 20.04 via Docker (MPICH; x86-64)
  • Ubuntu 20.04 via Github Actions (MPICH, OpenMPI; x86-64)
  • Blue Waters, HPC system at the NCSA (Cray MPICH; x86-64)
  • Graham, HPC system at Compute Canada (Intel MPI; x86-64)
  • Marconi A3, HPC system at Cineca (Intel MPI; x86-64)
  • Niagara, HPC system at Compute Canada (OpenMPI; x86-64)
  • Summit, HPC system at ORNL (Spectrum MPI; IBM POWER 9)
  • Symmetry, in-house HPC system at the Perimeter Institute (MPICH, OpenMPI; x86-64)

Workflow

Preparing an HPC system

Install MPIwrapper, wrapping the MPI installation you want to use there. You can install MPIwrapper multiple times if you want to wrap more than one MPI implementation.

This is possibly as simple as

cmake -S . -B build -DMPIEXEC_EXECUTABLE=mpiexec -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_INSTALL_PREFIX=$HOME/mpiwrapper
cmake --build build
cmake --install build

but nothing is ever simple on an HPC system. It might be necessary to load certain modules, or to specify more cmake MPI configuration options.

The MPIwrapper libraries remain on the HPC system, they are installed independently of any application.

Building an application

Build your application as usual, using MPItrampline as MPI library.

Running an application

At startup time, MPItrampoline needs to be told which MPIwrapper library to use. This is done via the environment variable MPITRAMPOLINE_LIB. You also need to point MPItrampoline's mpiexec to a respective wrapper created by MPIwrapper, using the environment variable MPITRAMPOLINE_MPIEXEC.

For example:

env MPITRAMPOLINE_MPIEXEC=$HOME/mpiwrapper/bin/mpiwrapper-mpiexec MPITRAMPOLINE_LIB=$HOME/mpiwrapper/lib/libmpiwrapper.so mpiexec -n 4 ./your-application

The mpiexec you run here needs to be the one provided by MPItrampoline.

Current state

MPItrampoline uses the C preprocessor to create wrapper functions for each MPI function. This is how MPI_Send is wrapped:

FUNCTION(int, Send,
         (const void *buf, int count, MT(Datatype) datatype, int dest, int tag,
          MT(Comm) comm),
         (buf, count, (MP(Datatype))datatype, dest, tag, (MP(Comm))comm))

Unfortunately, MPItrampoline does not yet wrap the Fortran API. Your help is welcome.

Certain MPI types, constants, and functions are difficult to wrap. Theoretically, there could be MPI libraries where it is not possible to implement the current MPI ABI. If you encounter this, please let me know -- maybe there is a work-around.

Comments
  • Add support for MPI profiling interface

    Add support for MPI profiling interface

    Each standard MPI function can be called with an MPI_ or PMPI_ prefix (quoting from https://www.open-mpi.org/faq/?category=perftools#PMPI), I think MPItrampoline doesn't currently support the PMPI_ calls.

    opened by ocaisa 6
  • Supporting `MPIX_Query_cuda_support()`

    Supporting `MPIX_Query_cuda_support()`

    While not part of the standard, MPIX_Query_cuda_support() is available in a number of MPI implementations (see https://github.com/pmodels/mpich/pull/4741). It's also being used by a number of applications (and hopefully that will grow, see my issue at https://github.com/lammps/lammps/issues/3140 which links back to the support in GROMACS). This would be a valuable inclusion in MPItrampoline since it would then be able to handle the runtime detection of CUDA support in the MPI implementation.

    opened by ocaisa 6
  • Allow overriding default compilation options

    Allow overriding default compilation options

    Currently default compilation options are set during the build of MPItrampoline, it would probably be useful to be able to fully override these, e.g.,

    exec ${MPITRAMPOLINE_CC:[email protected]_C_COMPILER@} ${CFLAGS:-"@CMAKE_C_FLAGS@"} [email protected]_INSTALL_PREFIX@/@CMAKE_INSTALL_INCLUDEDIR@ @LINK_FLAGS@ [email protected]_INSTALL_PREFIX@/@CMAKE_INSTALL_LIBDIR@ -Wl,-rpath,@CMAKE_INSTALL_PREFIX@/@CMAKE_INSTALL_LIBDIR@ "$@" -lmpi -ldl
    
    opened by ocaisa 5
  • Allow use of a fallback/default value for `MPITRAMPOLINE_MPIEXEC`

    Allow use of a fallback/default value for `MPITRAMPOLINE_MPIEXEC`

    It's possible to configure a default MPI library with -DMPITRAMPOLINE_DEFAULT_LIB=XXX, it would be good to be able to also configure a default mpiexec (-DMPITRAMPOLINE_DEFAULT_MPIEXEC=XXX) so that one can have a fully functional fallback in place at build time.

    opened by ocaisa 3
  • Incomplete installation

    Incomplete installation

    Hello ! I am looking at installing MPItrampoline, and following the steps outlined in the README.md, I cannot access files later referenced.

    For instance, on Summit at ORNL, using the following script:

    INSTALLDIR=$HOME/mpiwrapper
    
    module load cmake/3.18
    module load gcc
    
    cmake -S . -B build -DMPIEXEC_EXECUTABLE=mpiexec \
                                   -DCMAKE_BUILD_TYPE=RelWithDebInfo \
                                   -DCMAKE_INSTALL_PREFIX=$INSTALLDIR
    cmake --build build
    cmake --install build
    

    The following installation is generated:

    $ tree mpiwrapper/
    mpiwrapper/
    |-- bin
    |   |-- mpicc
    |   |-- mpicxx
    |   |-- mpiexec
    |   |-- mpifc
    |   `-- mpifort
    |-- include
    |   |-- mpi.h
    |   |-- mpi.mod
    |   |-- mpi_declarations.h
    |   |-- mpi_declarations_fortran.h
    |   |-- mpi_declarations_fortran90.h
    |   |-- mpi_defaults.h
    |   |-- mpi_f08.mod
    |   |-- mpi_version.h
    |   |-- mpiabi.h
    |   |-- mpiabif.h
    |   |-- mpif.h
    |   `-- mpio.h
    |-- lib
    |   |-- cmake
    |   |   `-- MPItrampoline
    |   |       |-- MPItrampolineConfig.cmake
    |   |       |-- MPItrampolineConfigVersion.cmake
    |   |       |-- MPItrampolineTargets-relwithdebinfo.cmake
    |   |       `-- MPItrampolineTargets.cmake
    |   `-- pkgconfig
    |       `-- MPItrampoline.pc
    `-- lib64
        |-- libmpi.a
        `-- libmpifort.a
    
    7 directories, 24 files
    

    The README.md dictates to use the wrapped libraries, but no shared libraries are available here. I looked through the options of the CMakeLists.txt but the only one defined in the project is the fortran flag.

    Am I missing something ?

    opened by spoutn1k 2
  •  Issues building Global Arrays

    Issues building Global Arrays

    I'm trying to build the Global Arrays library with MPItrampoline and have run into some issues. This package is a dependency for Molpro and several other computational chemistry applications. Any assistance that you can provide to get it working would be greatly appreciated.

    The compilation fails at https://github.com/GlobalArrays/ga/blob/f4016b869dfd1a2b2856f74a73dd9452dbbc8ae4/comex/src-mpi-pr/comex.c#L4968 with the error message:

    libtool: compile:  mpicc -DHAVE_CONFIG_H -I. -I./src-common -I./src-mpi-pr -g -O2 -MT src-mpi-pr/comex.lo -MD -MP -MF src-mpi-pr/.deps/comex.Tpo -c src-mpi-pr/comex.c -o src-mpi-pr/comex.o
    src-mpi-pr/comex.c: In function ‘str_mpi_retval’:
    src-mpi-pr/comex.c:4932:9: error: case label does not reduce to an integer constant
             case MPI_SUCCESS       : msg = "MPI_SUCCESS"; break;
             ^
    

    Steps to reproduce:

    git clone -b develop https://github.com/GlobalArrays/ga
    cd ga
    ./autogen.sh
    ./configure --with-mpi-pr --with-blas=no --with-lapack=no --with-scalapack=no --disable-f77
    make
    

    I've tried both the develop and master branches.

    There are lots of configurations which can be used, we're most interested in the recommended port which uses MPI-1 with progress ranks (--with-mpi-pr) but I tried several other configurations without success.

    I'm not sure whether it's an MPItrampoline issue or whether it's non-standard use of MPI within Global Arrays.

    I've attached the full output from build build-ga.txt

    I've tried on

    • RHEL 7.9 with gcc 4.8.5
    • Ubuntu 22.04 with gcc 11.3.0
    opened by nick-wilson 9
  • Issues building CP2K

    Issues building CP2K

    I thought I would give this a full test with Fortran, and CP2K is a good benchmark for that. The build (v8.2) is failing with:

    /project/60005/easybuild/build/CP2K/8.2/gmtfbf-2021a/cp2k-8.2/exts/dbcsr/src/mpi/dbcsr_mpiwrap.F:1669:21:
    
     1669 |       CALL mpi_bcast(msg, msglen, MPI_LOGICAL, source, gid, ierr)
          |                     1
    ......
     3160 |       CALL mpi_bcast(msg, msglen, ${mpi_type1}$, source, gid, ierr)
          |                     2
    Error: Type mismatch between actual argument at (1) and actual argument at (2) (LOGICAL(4)/COMPLEX(4)).
    
    opened by ocaisa 24
  • Building shared and static libraries at once

    Building shared and static libraries at once

    Currently the default behaviour is to only build static libraries. It might be good build both static and shared libraries since then if libmpi.so is in the default search path it is not selected over the library from MPItrampoline (MPItrampoline would shadow libmpi.so and libmpi.a).

    opened by ocaisa 4
Releases(v5.2.0)
Owner
Erik Schnetter
Erik Schnetter
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
A high-performance Python-based I/O system for large (and small) deep learning problems, with strong support for PyTorch.

WebDataset WebDataset is a PyTorch Dataset (IterableDataset) implementation providing efficient access to datasets stored in POSIX tar archives and us

1.1k Jan 08, 2023
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022