Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Overview

Graph Transformer - Pytorch

Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by both Costa et al and Bakers lab for transforming MSA and pair-wise embedding into 3d coordinates.

Todo

  • add rotary embeddings for injecting adjacency information

Install

$ pip install graph-transformer-pytorch

Usage

import torch
from graph_transformer_pytorch import GraphTransformer

model = GraphTransformer(
    dim = 256,
    depth = 6,
    edge_dim = 512,             # optional - if left out, edge dimensions is assumed to be the same as the node dimensions above
    with_feedforwards = True,   # whether to add a feedforward after each attention layer, suggested by literature to be needed
    gated_residual = True       # to use the gated residual to prevent over-smoothing
)

nodes = torch.randn(1, 128, 256)
edges = torch.randn(1, 128, 128, 512)
mask = torch.ones(1, 128).bool()

nodes, edges = model(nodes, edges, mask = mask)

nodes.shape # (1, 128, 256) - project to R^3 for coordinates

Citations

@article {Costa2021.06.02.446809,
    author  = {Costa, Allan and Ponnapati, Manvitha and Jacobson, Joseph M. and Chatterjee, Pranam},
    title   = {Distillation of MSA Embeddings to Folded Protein Structures with Graph Transformers},
    year    = {2021},
    doi     = {10.1101/2021.06.02.446809},
    publisher = {Cold Spring Harbor Laboratory},
    URL     = {https://www.biorxiv.org/content/early/2021/06/02/2021.06.02.446809},
    eprint  = {https://www.biorxiv.org/content/early/2021/06/02/2021.06.02.446809.full.pdf},
    journal = {bioRxiv}
}
@article {Baek2021.06.14.448402,
    author  = {Baek, Minkyung and DiMaio, Frank and Anishchenko, Ivan and Dauparas, Justas and Ovchinnikov, Sergey and Lee, Gyu Rie and Wang, Jue and Cong, Qian and Kinch, Lisa N. and Schaeffer, R. Dustin and Mill{\'a}n, Claudia and Park, Hahnbeom and Adams, Carson and Glassman, Caleb R. and DeGiovanni, Andy and Pereira, Jose H. and Rodrigues, Andria V. and van Dijk, Alberdina A. and Ebrecht, Ana C. and Opperman, Diederik J. and Sagmeister, Theo and Buhlheller, Christoph and Pavkov-Keller, Tea and Rathinaswamy, Manoj K and Dalwadi, Udit and Yip, Calvin K and Burke, John E and Garcia, K. Christopher and Grishin, Nick V. and Adams, Paul D. and Read, Randy J. and Baker, David},
    title   = {Accurate prediction of protein structures and interactions using a 3-track network},
    year    = {2021},
    doi     = {10.1101/2021.06.14.448402},
    publisher = {Cold Spring Harbor Laboratory},
    URL     = {https://www.biorxiv.org/content/early/2021/06/15/2021.06.14.448402},
    eprint  = {https://www.biorxiv.org/content/early/2021/06/15/2021.06.14.448402.full.pdf},
    journal = {bioRxiv}
}
@misc{shi2021masked,
    title   = {Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification}, 
    author  = {Yunsheng Shi and Zhengjie Huang and Shikun Feng and Hui Zhong and Wenjin Wang and Yu Sun},
    year    = {2021},
    eprint  = {2009.03509},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
You might also like...
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

A PyTorch implementation of
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

Comments
  • fix mask bug in batch setting

    fix mask bug in batch setting

    The original implementation accidentally assumes batch size 1 here, and the mask's batch dimension (1) is automatically broadcast to the # of heads. If batch size is greater than 1, we have to handle that explicitly by copying it once for each head.

    opened by tachim 1
Releases(0.0.3)
Owner
Phil Wang
Working with Attention
Phil Wang
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022