A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

Overview

python_graphs

This package is for computing graph representations of Python programs for machine learning applications. It includes the following modules:

  • control_flow For computing control flow graphs statically from Python programs.
  • data_flow For computing data flow analyses of Python programs.
  • program_graph For computing graphs statically to represent arbitrary Python programs or functions.
  • cyclomatic_complexity For computing the cyclomatic complexity of a Python function.

Installation

To install python_graphs with pip, run: pip install python_graphs.

To install python_graphs from source, run: python setup.py develop.

Common Tasks

Generate a control flow graph from a function fn:

from python_graphs import control_flow
graph = control_flow.get_control_flow_graph(fn)

Generate a program graph from a function fn:

from python_graphs import program_graph
graph = program_graph.get_program_graph(fn)

Compute the cyclomatic complexity of a function fn:

from python_graphs import control_flow
from python_graphs import cyclomatic_complexity
graph = control_flow.get_control_flow_graph(fn)
value = cyclomatic_complexity.cyclomatic_complexity(graph)

This is not an officially supported Google product.

Comments
  • Can you provide a quick start example?

    Can you provide a quick start example?

    Super cool project! Love the idea and think it has a lot of potential.

    it would be awesome to have an examples/ directory containing some sample usages - maybe even just plotting the graphs with networkX and matplotlib.

    question 
    opened by LukeWood 5
  • How do we solve the error when installing python-graphs?

    How do we solve the error when installing python-graphs?

    Hello,

    I encountered an error "fatal error: 'graphviz/cgraph.h' file not found" when trying to install python_graphs. How do I solve this issue, please? Thanks.

    question 
    opened by fraolBatole 2
  • How to generate a Holistic Data Flow Graph for a given Function ?

    How to generate a Holistic Data Flow Graph for a given Function ?

    @dbieber, Thanks for this awesome work.

    Question

    control_flow.get_control_flow_graph, returns a Control Flow Graph for a given Function Object. There is one data_flow class, Is there a way to generate a complete Data Flow Graph given a Function Object?

    Thanks.

    opened by reshinthadithyan 2
  • Rename fn to get_test_components to eliminate extra test from logs

    Rename fn to get_test_components to eliminate extra test from logs

    The function test_components was being registered as an unsupported test, when in reality it was meant as a helper function for tests. Renaming resolves this.

    opened by dbieber 0
  • get_start_control_flow_node, next_from_end, raise edges, and labels in branches

    get_start_control_flow_node, next_from_end, raise edges, and labels in branches

    • Adds get_start_control_flow_node to ControlFlowGraph
    • Adds next_from_end to ControlFlowNode
    • Uses labels (e.g. '' and '' strings) to indicate these special nodes
    • Support keyword only arguments without defaults
    • Add non-interrupting edges from raise statements
    • Bump version number
    opened by dbieber 0
  • Separate branch kinds

    Separate branch kinds

    Splits "branches" into branches, except_branches, and reraise_branches.

    branches are you're usual branch decisions: ifs, fors, and whiles. except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.

    opened by dbieber 0
  • Add module frame to catch raises in top-level code.

    Add module frame to catch raises in top-level code.

    Add module frame to catch raises in top-level code. Also marks except expressions and finally blocks as branch points.

    An "except A:"'s branch decision is whether the current exception matches A. At the end of a finally block, the branch decision is whether an exception is currently being raised.

    This includes https://github.com/google-research/python-graphs/pull/3: Splits "branches" into branches, except_branches, and reraise_branches.

    branches are your usual branch decisions: ifs, fors, and whiles. except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.

    opened by dbieber 0
  • KeyError when trying to get program_graph

    KeyError when trying to get program_graph

    When I try to create a program graph, I encounter a KeyError. If I remove all the and and or expressions from the python file (buggy.py) the error does not occur.

    This is how I use the library:

    graph = program_graph.get_program_graph(code)
    program_graph_graphviz.render(graph, path='source.png')
    

    where code is simply the code in the attached file buggy.py.txt.

    I have also attached the log file log.txt.

    buggy.py.txt

    log.txt

    More information: python 3.9.5 commit head=44c15b92197f374c3550353ff827997ef1c1d857 gast 0.5.3

    opened by ppashakhanloo 1
Releases(v1.2.3)
  • v1.2.3(Oct 7, 2021)

    get_start_control_flow_node, next_from_end, raise edges, and labels in branches (#6)

    * Adds get_start_control_flow_node to ControlFlowGraph
    * Adds next_from_end to ControlFlowNode
    * Uses labels (e.g. '<exit>' and '<raise>' strings) to indicate these special nodes
    * Support keyword only arguments without defaults
    * Add non-interrupting edges from raise statements
    * Bump version number
    
    Source code(tar.gz)
    Source code(zip)
  • v1.2.0(Oct 5, 2021)

    Introduce get_branches API on control flow nodes. Previously the new branch types (except_branches and reraise_branches) were only accessible on basic blocks, not on individual nodes.

    Source code(tar.gz)
    Source code(zip)
  • v1.1.0(Oct 5, 2021)

    1. Adds a module frame to catch raises in top-level code.
    2. Also marks except expressions and finally blocks as branch points.

    The branch kinds are: branches, except_branches, and reraise_branches.

    • branches are your usual branch decisions: ifs, fors, and whiles.
    • except_branches are at "except E:" statements, with True indicating the exception matches and False indicating it does not
    • reraise_branches are at the end of "finally:" blocks, with True indicating the path taken after finally if an error has been raised previously, and False indicating the path taken if there's nothing to reraise at the end of the finally.
    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(May 7, 2021)

  • v1.0.0(Apr 12, 2021)

    v1.0.0

    Initial public release of the python_graphs library.

    Core features:

    • control flow graph generation
    • data flow analyses
    • program graph construction
    • cyclomatic complexity calculation
    • a solid test suite for all the above
    • visualizations using graphviz for each of the graph representations
    Source code(tar.gz)
    Source code(zip)
Owner
Google Research
Google Research
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023