An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Overview

Transformer-in-Transformer Twitter

PyPI Open In Colab Upload Python Package Lint Code Base Code style: black

GitHub License GitHub stars GitHub followers Twitter Follow

An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local patches. Transformer in Transformer uses pixel level attention paired with patch level attention for image classification, in TensorFlow.

PyTorch Implementation

Installation

Run the following to install:

pip install tnt-tensorflow

Developing tnt-tensorflow

To install tnt-tensorflow, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/Transformer-in-Transformer.git
# or clone your own fork

cd tnt
pip install -e .[dev]

Usage

import tensorflow as tf
from tnt import TNT

tnt = TNT(
    image_size=256,  # size of image
    patch_dim=512,  # dimension of patch token
    pixel_dim=24,  # dimension of pixel token
    patch_size=16,  # patch size
    pixel_size=4,  # pixel size
    depth=5,  # depth
    num_classes=1000,  # output number of classes
    attn_dropout=0.1,  # attention dropout
    ff_dropout=0.1,  # feedforward dropout
)

img = tf.random.uniform(shape=[5, 3, 256, 256])
logits = tnt(img) # (5, 1000)

Want to Contribute 🙋‍♂️ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citation

@misc{han2021transformer,
      title={Transformer in Transformer}, 
      author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and Yunhe Wang},
      year={2021},
      eprint={2103.00112},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Comments
  • Add Unit Tests

    Add Unit Tests

    The tests should check for the rank and shape of the output tensors, the test should override tf.test.TestCase base class.

    • [x] #15
    • [x] #16
    • [x] #18
    • [x] #17

    Feel free to take inspiration from:

    • https://github.com/Rishit-dagli/Fast-Transformer/blob/main/fast_transformer/test_fast_transformer.py
    • For parametrization feel free to follow https://stackoverflow.com/a/34094/11878567, can be used in the exact same way with subTest in TensorFlow
    enhancement good first issue 
    opened by Rishit-dagli 3
  • Update Workflows to run tests

    Update Workflows to run tests

    This issue follows #11

    Update GitHub Workflows to:

    • [ ] Run Tests before uploading to PyPI
    • [ ] Create a workflow to run tests on commits

    Feel free to take inspiration from https://github.com/Rishit-dagli/Fast-Transformer/tree/main/.github/workflows

    enhancement good first issue 
    opened by Rishit-dagli 0
  • Creates an Attention layer

    Creates an Attention layer

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    

    Closes #3

    opened by Rishit-dagli 0
  • Put together a TNT class

    Put together a TNT class

    Verify shapes:

    tnt = TNT(
        image_size=256,  # size of image
        patch_dim=512,  # dimension of patch token
        pixel_dim=24,  # dimension of pixel token
        patch_size=16,  # patch size
        pixel_size=4,  # pixel size
        depth=5,  # depth
        num_classes=1000,  # output number of classes
        attn_dropout=0.1,  # attention dropout
        ff_dropout=0.1,  # feedforward dropout
    )
    
    img = tf.random.uniform(shape=[1, 3, 256, 256])
    print(tnt(img).shape)
    
    # (1, 1000)
    ```
    opened by Rishit-dagli 0
  • Create an Attention layerr

    Create an Attention layerr

    Verify output shapes just from the attention layer:

    import tensorflow as tf
    Attention(dim=256)(tf.random.normal([3,256,256]))
    
    # <tf.Tensor: shape=(3, 256, 256), dtype=float32,
    
    opened by Rishit-dagli 0
  • Create a PreNorm layer

    Create a PreNorm layer

    Verify output shapes from this layer:

    import tensorflow as tf
    PreNorm(dim=1, fn=tf.keras.layers.Dense(5))(tf.random.normal([10, 1]))
    
    # <tf.Tensor: shape=(10, 1), dtype=float32,
    
    opened by Rishit-dagli 0
Releases(v0.2.0)
  • v0.2.0(Feb 2, 2022)

    This is an interesting release for the project, including a pre-trained model on ImageNet, reproducibility of paper results, tests, and end-to-end training.

    ✅ Bug Fixes / Improvements

    • Create an end-to-end training example demonstrating how to train a TNT model for image classification through a custom training loop on the TF Flowers dataset (#14)
    • Pre-trained model to reproduce the paper results have been made available (in this release as well as on TensorFlow Hub)
    • Create an off-the-shelf inference example, that highlights how you can directly use the pre-trained model made available
    • Unit Tests for the Attention class (#19)
    • Unit Tests for the main TNT class (#20)

    Full Changelog: https://github.com/Rishit-dagli/Transformer-in-Transformer/compare/v0.1.0...v0.2.0

    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
  • v0.1.0(Dec 3, 2021)

    This is the initial release of TNT TensorFlow and implements Transformers in Transformers as a subclassed TensorFlow model.

    Classes

    • Attention: Implements attention as a TensorFlow Keras Layer making some modifications.
    • PreNorm: Normalize the activations of the previous layer for each given example in a batch independently and apply some function to it, implemented as a TensorFlow Keras Layer.
    • FeedForward: Create a FeedForward neural net with two Dense layers and GELU activation, implemented as a TensorFlow Keras Layer.
    • TNT: Implements the Transformers in Transformers model using all the other classes, and converts to logits. Implemented as a TensorFlow Keras Model.
    Source code(tar.gz)
    Source code(zip)
    tnt_s_patch16_224.tar.gz(84.42 MB)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022