This is the code of using DQN to play Sekiro .

Overview

Update for using DQN to play sekiro 2021.2.2(English Version)

This is the code of using DQN to play Sekiro .

I am very glad to tell that I have writen the codes of using DQN to play Sekiro . As is known to all , Supervised learning can only learn skills from the data we provide for it . However , this time by using Reinforcement Learning , we can see a more clever agent playing Sekiro .

Reinforcement Learning can update its network by itself , using the reward feedback , which means we no longer need to collect our own data sets this time . All the data sets come from the real-time interaction between DQN network and the game. By using this DQN network , you can fight any boss you want in the game . There still something you need to know :

Have fun !

Old version sekiro_tensorflow

Code link for using Supervised learning to play Sekiro : https://github.com/analoganddigital/sekiro_tensorflow

Hello everyone , this is analoganddigital . I use this code to complete an interesting porgram of using machine learning to play Sekiro . You can see the final presentation in https://www.bilibili.com/video/BV1wC4y1s7oa/ . I am a junior student in university , which means I can't spend too much time on this program . What a shame ! On the other hand , many audiences hope me share this code . Thus , I eventually put it on the GitHub . This is an interesting program , and I hope everyone can enjoy it. In addition , I really welcome you to improve this program , to make this AI more smart ! There still something you need to konw:

  • The window size I set is 96*86 , you can change it by yourselves .
  • I finally collected 300M training data , if you want better result , maybe you need to collect more data .
  • I use Alexnet to finish the training . This program is depend on Supervised learning.
  • I have no idea about using Reinforcement learning yet , so I will really appreciate it if someone can help me to overcome this difficulty.(already finished)
  • See the tutorial video for specific code usage , link : https://www.bilibili.com/video/BV1bz4y1R7kB

Reference : https://github.com/Sentdex/pygta5/blob/master/LICENSE

更新——强化学习DQN打只狼 2021.2.2(中文说明)

我非常高兴地告诉大家,我最近又开发出了用DQN强化学习打只狼的代码。 众所周知,监督学习只能学习到我们所提供的数据集的相关技能,但是利用强化学习,我们将看到一个完全不一样的只狼。

强化学习会根据reward奖励进行判断并且自己学习一种打斗方法。更重要的是,我们这次不再需要自己收集数据集了,所有更新数据均来自于DQN网络与游戏的实时交互。 利用这个DQN代码(链接见下方),你可以挑战只狼中任何一个boss,只要boss的血条位置不变即可(因为我采用的是图像抓取的方式获取只狼的血量与boss的血量进行reward判断)。 然后还有一些注意事项:

祝各位玩得愉快!

旧版本用机器学习打只狼

旧版本的利用监督学习打只狼的代码链接: https://github.com/analoganddigital/sekiro_tensorflow

各位观众大家好,我GitHub用户名是analoganddigital。我用这个程序完成了机器学习打只狼这个项目。 最终效果视频可以看b站https://www.bilibili.com/video/BV1wC4y1s7oa/ 。 我是一个大三学生,真的非常抱歉没能长时间更新这个项目,所以我把它放到了GitHub上面,之前很多观众也是私信我想要代码。 总之我还是希望大家能喜欢这个小项目吧。当然,我非常希望大家能帮忙完善这个程序,万分感激,大家共同讨论我们会获益更多,这其实就是开源的意义。现在由于代码比较基础,所以训练效果不太好。我相信大家会有更多的点子,如果能更新一点算法,我们将会看到一个更机智的AI。我很感谢大家对之前视频的支持(受宠若惊),也十分期待大家有趣的优化,就算没有优化直接用也可以。 还有一些细节我这声明一下:

  • 我截取的图像大小是96*86的,各位可以根据自身情况选择。
  • 我最终只收集了300M的数据,如果你想训练效果更好的话,可能要收集更多。
  • 我用的神经网络是Alexnet,基于监督学习完成的。
  • 由于我能力有限,我还没想好如何用强化学习优化算法,所以如果有大佬能分享一下自己的才华,那将十分感谢。(目前已经实现)
  • 具体代码使用方法请见我在b站上发布的机器学习打只狼的教程视频,链接: https://www.bilibili.com/video/BV1bz4y1R7kB

部分参考代码: https://github.com/Sentdex/pygta5/blob/master/LICENSE

A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022