Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Overview

Neural Wireframe Renderer: Learning Wireframe to Image Translations

Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning Wireframe to Image Translations by Yuan Xue, Zihan Zhou, and Xiaolei Huang

Dependencies

  • Tested on CentOS 7
  • Python >= 3.6
  • PyTorch >= 1.0
  • TensorboardX >= 1.6

Dataset

  • You can download the data from here. By default, pelease extract all files inside v1.1 to the data/raw_data/imgs folder, and extract all files inside pointlines to the data/raw_data/pointlines folder.
  • To preprocess the data, run
python data/preprocess.py --uni_wf

The processed data will be saved under the data folder.

Train

We support both single gpu training and multi-gpu training with Jiayuan Mao's Synchronized Batch Normalization.

Example Single GPU Training

If you are training with color guided rendering:

python train.py --gpu 0 --batch_size 14

If you are training without color guided rendering:

python train.py --gpu 0 --batch_size 14 --nocolor

Example Multiple GPU Training

python train.py --gpu 0,1,2,3 --batch_size 40

Tensorboard Visualization

tensorboard --logdir results/tb_logs/wfrenderer --port 6666

Test

Note that the --nocolor option needs to be used consistently with training. For instance, you cannot train with --nocolor and test without --nocolor.

python test.py --gpu 0 --model_path YOUR_SAVED_MODEL_PATH --out_path YOUR_OUTPUT_PATH

Input Modality

For now we only support rasterized wireframes as input, we will release the vectorized wireframe version in the near future.

Citation

We hope our implementation can serve as a baseline for wireframe rendering. If you find our work useful in your research, please consider citing:

@inproceedings{xue2020neural,
  title={Neural Wireframe Renderer: Learning Wireframe to Image Translations},
  author={Xue, Yuan and Zhou, Zihan and Huang, Xiaolei},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Acknowledgement

Part of our code is adapted from CycleGAN. We also thank these great repos utilized in our code: LPIPS, MSSSIM, SyncBN,

Owner
Yuan Xue
Ph.D. Candidate in Computer Science
Yuan Xue
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022