Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Overview

Neural Wireframe Renderer: Learning Wireframe to Image Translations

Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning Wireframe to Image Translations by Yuan Xue, Zihan Zhou, and Xiaolei Huang

Dependencies

  • Tested on CentOS 7
  • Python >= 3.6
  • PyTorch >= 1.0
  • TensorboardX >= 1.6

Dataset

  • You can download the data from here. By default, pelease extract all files inside v1.1 to the data/raw_data/imgs folder, and extract all files inside pointlines to the data/raw_data/pointlines folder.
  • To preprocess the data, run
python data/preprocess.py --uni_wf

The processed data will be saved under the data folder.

Train

We support both single gpu training and multi-gpu training with Jiayuan Mao's Synchronized Batch Normalization.

Example Single GPU Training

If you are training with color guided rendering:

python train.py --gpu 0 --batch_size 14

If you are training without color guided rendering:

python train.py --gpu 0 --batch_size 14 --nocolor

Example Multiple GPU Training

python train.py --gpu 0,1,2,3 --batch_size 40

Tensorboard Visualization

tensorboard --logdir results/tb_logs/wfrenderer --port 6666

Test

Note that the --nocolor option needs to be used consistently with training. For instance, you cannot train with --nocolor and test without --nocolor.

python test.py --gpu 0 --model_path YOUR_SAVED_MODEL_PATH --out_path YOUR_OUTPUT_PATH

Input Modality

For now we only support rasterized wireframes as input, we will release the vectorized wireframe version in the near future.

Citation

We hope our implementation can serve as a baseline for wireframe rendering. If you find our work useful in your research, please consider citing:

@inproceedings{xue2020neural,
  title={Neural Wireframe Renderer: Learning Wireframe to Image Translations},
  author={Xue, Yuan and Zhou, Zihan and Huang, Xiaolei},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Acknowledgement

Part of our code is adapted from CycleGAN. We also thank these great repos utilized in our code: LPIPS, MSSSIM, SyncBN,

Owner
Yuan Xue
Ph.D. Candidate in Computer Science
Yuan Xue
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Noisy Natural Gradient as Variational Inference PyTorch implementation of Noisy Natural Gradient as Variational Inference. Requirements Python 3 Pytor

Tony JiHyun Kim 119 Dec 02, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022