This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Overview

Swin Transformer

This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8.

Introduction(Quoted from the Original Project )

Swin Transformer original github repo (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

Setup

  1. Please refer to the Install session for conda environment build.
  2. Please refer to the Data preparation session to prepare Imagenet-1K.
  3. Install the TensorRT, now we choose the TensorRT 8.2 GA(8.2.1.8) as the test version.

Code Structure

Focus on the modifications and additions.

.
├── export.py                  # Export the PyTorch model to ONNX format
├── get_started.md            
├── main.py
├── models
│   ├── build.py
│   ├── __init__.py
│   ├── swin_mlp.py
│   └── swin_transformer.py    # Build the model, modified to export the onnx and build the TensorRT engine
├── README.md
├── trt                        # Directory for TensorRT's engine evaluation and visualization.
│   ├── engine.py
│   ├── eval_trt.py            # Evaluate the tensorRT engine's accuary.
│   ├── onnxrt_eval.py         # Run the onnx model, generate the results, just for debugging
├── utils.py
└── weights

Export to ONNX and Build TensorRT Engine

You need to pay attention to the two modification below.

  1. Exporting the operator roll to ONNX opset version 9 is not supported. A: Please refer to torch/onnx/symbolic_opset9.py, add the support of exporting torch.roll.

  2. Node (Concat_264) Op (Concat) [ShapeInferenceError] All inputs to Concat must have same rank.
    A: Please refer to the modifications in models/swin_transformer.py. We use the input_resolution and window_size to compute the nW.

       if mask is not None:
         nW = int(self.input_resolution[0]*self.input_resolution[1]/self.window_size[0]/self.window_size[1])
         #nW = mask.shape[0]
         #print('nW: ', nW)
         attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
         attn = attn.view(-1, self.num_heads, N, N)
         attn = self.softmax(attn)

Accuray Test Results on ImageNet-1K Validation Dataset

  1. Download the Swin-T pretrained model from Model Zoo. Evaluate the accuracy of the Pytorch pretrained model.

    $ python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k
  2. export.py exports a pytorch model to onnx format.

    $ python export.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k --batch-size 16
  3. Build the TensorRT engine using trtexec.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine --workspace=4096

    Add the --fp16 or --best tag to build the corresponding fp16 or int8 model. Take fp16 as an example.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --fp16 --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16_fp16.engine --workspace=4096

    You can use the trtexec to test the throughput of the TensorRT engine.

    $ trtexec --loadEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine
  4. trt/eval_trt.py aims to evalute the accuracy of the TensorRT engine.

$ python trt/eval_trt.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224_batch16.engine --data-path ../imagenet_1k --batch-size 16
  1. trt/onnxrt_eval.py aims to evalute the accuracy of the Onnx model, just for debug.
    $ python trt/onnxrt_eval.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.onnx --data-path ../imagenet_1k --batch-size 16
SwinTransformer(T4) [email protected] Notes
PyTorch Pretrained Model 81.160
TensorRT Engine(FP32) 81.156
TensorRT Engine(FP16) - TensorRT 8.0.3.4: 81.156% vs TensorRT 8.2.1.8: 72.768%

Notes: Reported a nvbug for the FP16 accuracy issue, please refer to nvbug 3464358.

Speed Test of TensorRT engine(T4)

SwinTransformer(T4) FP32 FP16 INT8
batchsize=1 245.388 qps 510.072 qps 514.707 qps
batchsize=16 316.8624 qps 804.112 qps 804.1072 qps
batchsize=64 329.13984 qps 833.4208 qps 849.5168 qps
batchsize=256 331.9808 qps 844.10752 qps 840.33024 qps

Analysis: Compared with FP16, INT8 does not speed up at present. The main reason is that, for the Transformer structure, most of the calculations are processed by Myelin. Currently Myelin does not support the PTQ path, so the current test results are expected.
Attached the int8 and fp16 engine layer information with batchsize=128 on T4.

Build with int8 precision:

[12/04/2021-06:34:17] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1025026069226666066, Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)] -> 191[Int8(128,96,56,56)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, 191[Int8(128,96,56,56)] -> Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)] -> (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)]
Layer(CaskConvolution): Gemm_2128, Tactic: -1838109259315759592, (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)] -> (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle], Tactic: 0, (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)] -> Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)]
Layer(NoOp): (Unnamed Layer* 4183) [Shuffle], Tactic: 0, Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)] -> output_0[Float(128,1000)]

Build with fp16 precision:

[12/04/2021-06:44:31] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1579845938601132607, Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)] -> 191[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, 191[Half(128,96,56,56)] -> Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)] -> output_0[Float(128,1000)]

Todo

After the FP16 nvbug 3464358 solved, will do the QAT optimization.

Owner
maggiez
maggiez
maggiez
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022