Kroomsa: A search engine for the curious

Overview

Kroomsa

Kroomsa

A search engine for the curious. It is a search algorithm designed to engage users by exposing them to relevant yet interesting content during their session.

Description

The search algorithm implemented in your website greatly influences visitor engagement. A decent implementation can significantly reduce dependency on standard search engines like Google for every query thus, increasing engagement. Traditional methods look at terms or phrases in your query to find relevant content based on syntactic matching. Kroomsa uses semantic matching to find content relevant to your query. There is a blog post expanding upon Kroomsa's motivation and its technical aspects.

Getting Started

Prerequisites

  • Python 3.6.5
  • Run the project directory setup: python3 ./setup.py in the root directory.
  • Tensorflow's Universal Sentence Encoder 4
    • The model is available at this link. Download the model and extract the zip file in the /vectorizer directory.
  • MongoDB is used as the database to collate Reddit's submissions. MongoDB can be installed following this link.
  • To fetch comments of the reddit submissions, PRAW is used. To scrape credentials are needed that authorize the script for the same. This is done by creating an app associated with a reddit account by following this link. For reference you can follow this tuorial written by Shantnu Tiwari.
    • Register multiple instances and retrieve their credentials, then add them to the /config under bot_codes parameter in the following format: "client_id client_secret user_agent" as list elements separated by ,.
  • Docker-compose (For dockerized deployment only): Install the latest version following this link.

Installing

  • Create a python environment and install the required packages for preprocessing using: python3 -m pip install -r ./preprocess_requirements.txt
  • Collating a dataset of Reddit submissions
    • Scraping posts
      • Pushshift's API is being used to fetch Reddit submissions. In the root directory, run the following command: python3 ./pre_processing/scraping/questions/scrape_questions.py. It launches a script that scrapes the subreddits sequentially till their inception and stores the submissions as JSON objects in /pre_processing/scraping/questions/scraped_questions. It then partitions the scraped submissions into as many equal parts as there are registered instances of bots.
    • Scraping comments
      • After populating the configuration with bot_codes, we can begin scraping the comments using the partitioned submission files created while scraping submissions. Using the following command: python3 ./pre_processing/scraping/comments/scrape_comments.py multiple processes are spawned that fetch comment streams simultaneously.
    • Insertion
      • To insert the submissions and associated comments, use the following commands: python3 ./pre_processing/db_insertion/insertion.py. It inserts the posts and associated comments in mongo.
      • To clean the comments and tag the posts that aren't public due to any reason, Run python3 ./post_processing/post_processing.py. Apart from cleaning, it also adds emojis to each submission object (This behavior is configurable).
  • Creating a FAISS Index
    • To create a FAISS index, run the following command: python3 ./index/build_index.py. By default, it creates an exhaustive IDMap, Flat index but is configurable through the /config.
  • Database dump (For dockerized deployment)
    • For dockerized deployment, a database dump is required in /mongo_dump. Use the following command at the root dir to create a database dump. mongodump --db database_name(default: red) --collection collection_name(default: questions) -o ./mongo_dump.

Execution

  • Local deployment (Using Gunicorn)
    • Create a python environment and install the required packages using the following command: python3 -m pip install -r ./inference_requirements.txt
    • A local instance of Kroomsa can be deployed using the following command: gunicorn -c ./gunicorn_config.py server:app
  • Dockerized demo
    • Set the demo_mode to True in /config.
    • Build images: docker-compose build
    • Deploy: docker-compose up

Authors

License

This project is licensed under the Apache License Version 2.0

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreรฑo 108 Dec 27, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. ๐Ÿ’œ

Hacktober Fest 2021 ๐ŸŽ‰ Open source is changing the world โ€“ one contribution at a time! ๐ŸŽ‰ This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022