End-to-End Referring Video Object Segmentation with Multimodal Transformers

Related tags

Deep LearningMTTR
Overview

End-to-End Referring Video Object Segmentation with Multimodal Transformers

License Framework

This repo contains the official implementation of the paper:


End-to-End Referring Video Object Segmentation with Multimodal Transformers

MTTR_preview.mp4

How to Run the Code

First, clone this repo to your local machine using:

git clone https://github.com/mttr2021/MTTR.git

Dataset Requirements

A2D-Sentences

Follow the instructions here to download the dataset. Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── a2d_sentences/ 
    ├── Release/
    │   ├── videoset.csv  (videos metadata file)
    │   └── CLIPS320/
    │       └── *.mp4     (video files)
    └── text_annotations/
        ├── a2d_annotation.txt  (actual text annotations)
        ├── a2d_missed_videos.txt
        └── a2d_annotation_with_instances/ 
            └── */ (video folders)
                └── *.h5 (annotations files) 

###JHMDB-Sentences Follow the instructions here to download the dataset. Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── jhmdb_sentences/ 
    ├── Rename_Images/  (frame images)
    │   └── */ (action dirs)
    ├── puppet_mask/  (mask annotations)
    │   └── */ (action dirs)
    └── jhmdb_annotation.txt  (text annotations)

Refer-YouTube-VOS

Download the dataset from the competition's website here.

Note that you may be required to sign up to the competition in order to get access to the dataset. This registration process is free and short.

Then, extract and organize the files inside your cloned repo directory as follows (note that only the necessary files are shown):

MTTR/
└── refer_youtube_vos/ 
    ├── train/
    │   ├── JPEGImages/
    │   │   └── */ (video folders)
    │   │       └── *.jpg (frame image files) 
    │   └── Annotations/
    │       └── */ (video folders)
    │           └── *.png (mask annotation files) 
    ├── valid/
    │   └── JPEGImages/
    │       └── */ (video folders)
    │           └── *.jpg (frame image files) 
    └── meta_expressions/
        ├── train/
        │   └── meta_expressions.json  (text annotations)
        └── valid/
            └── meta_expressions.json  (text annotations)

Environment Installation

The code was tested on a Conda environment installed on Ubuntu 18.04. Install Conda and then create an environment as follows:

conda create -n mttr python=3.9.7 pip -y

conda activate mttr

  • Pytorch 1.10:

conda install pytorch==1.10.0 torchvision==0.11.1 -c pytorch -c conda-forge

Note that you might have to change the cudatoolkit version above according to your system's CUDA version.

  • Hugging Face transformers 4.11.3:

pip install transformers==4.11.3

  • COCO API (for mAP calculations):

pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

  • Additional required packages:

pip install h5py wandb opencv-python protobuf av einops ruamel.yaml timm joblib

conda install -c conda-forge pandas matplotlib cython scipy cupy

Running Configuration

The following table lists the parameters which can be configured directly from the command line.

The rest of the running/model parameters for each dataset can be configured in configs/DATASET_NAME.yaml.

Note that in order to run the code the path of the relevant .yaml config file needs to be supplied using the -c parameter.

Command Description
-c path to dataset configuration file
-rm running mode (train/eval)
-ws window size
-bs training batch size per GPU
-ebs eval batch size per GPU (if not provided, training batch size is used)
-ng number of GPUs to run on

Evaluation

The following commands can be used to reproduce the main results of our paper using the supplied checkpoint files.

The commands were tested on RTX 3090 24GB GPUs, but it may be possible to run some of them using GPUs with less memory by decreasing the batch-size -bs parameter.

A2D-Sentences

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 46.1
8 python main.py -rm eval -c configs/a2d_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 44.7

JHMDB-Sentences

The following commands evaluate our A2D-Sentences-pretrained model on JHMDB-Sentences without additional training.

For this purpose, as explained in our paper, we uniformly sample three frames from each video. To ensure proper reproduction of our results on other machines we include the metadata of the sampled frames under datasets/jhmdb_sentences/jhmdb_sentences_samples_metadata.json. This file is automatically loaded during the evaluation process with the commands below.

To avoid using this file and force sampling different frames, change the seed and generate_new_samples_metadata parameters under MTTR/configs/jhmdb_sentences.yaml.

Window Size Command Checkpoint File mAP Result
10 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 10 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 39.2
8 python main.py -rm eval -c configs/jhmdb_sentences.yaml -ws 8 -bs 3 -ckpt CHECKPOINT_PATH -ng 2 Link 36.6

Refer-YouTube-VOS

The following command evaluates our model on the public validation subset of Refer-YouTube-VOS dataset. Since annotations are not publicly available for this subset, our code generates a zip file with the predicted masks under MTTR/runs/[RUN_DATE_TIME]/validation_outputs/submission_epoch_0.zip. This zip needs to be uploaded to the competition server for evaluation. For your convenience we supply this zip file here as well.

Window Size Command Checkpoint File Output Zip J&F Result
12 python main.py -rm eval -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ckpt CHECKPOINT_PATH -ng 8 Link Link 55.32

Training

First, download the Kinetics-400 pretrained weights of Video Swin Transformer from this link. Note that these weights were originally published in video swin's original repo here.

Place the downloaded file inside your cloned repo directory as MTTR/pretrained_swin_transformer/swin_tiny_patch244_window877_kinetics400_1k.pth.

Next, the following commands can be used to train MTTR as described in our paper.

Note that it may be possible to run some of these commands on GPUs with less memory than the ones mentioned below by decreasing the batch-size -bs or window-size -ws parameters. However, changing these parameters may also affect the final performance of the model.

A2D-Sentences

  • The command for the following configuration was tested on 2 A6000 48GB GPUs:
Window Size Command
10 python main.py -rm train -c configs/a2d_sentences.yaml -ws 10 -bs 3 -ng 2
  • The command for the following configuration was tested on 3 RTX 3090 24GB GPUs:
Window Size Command
8 python main.py -rm train -c configs/a2d_sentences.yaml -ws 8 -bs 2 -ng 3

Refer-YouTube-VOS

  • The command for the following configuration was tested on 4 A6000 48GB GPUs:
Window Size Command
12 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 12 -bs 1 -ng 4
  • The command for the following configuration was tested on 8 RTX 3090 24GB GPUs.
Window Size Command
8 python main.py -rm train -c configs/refer_youtube_vos.yaml -ws 8 -bs 1 -ng 8

Note that this last configuration was not mentioned in our paper. However, it is more memory efficient than the original configuration (window size 12) while producing a model which is almost as good (J&F of 54.56 in our experiments).

JHMDB-Sentences

As explained in our paper JHMDB-Sentences is used exclusively for evaluation, so training is not supported at this time for this dataset.

This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
The PyTorch implementation for paper "Neural Texture Extraction and Distribution for Controllable Person Image Synthesis" (CVPR2022 Oral)

ArXiv | Get Start Neural-Texture-Extraction-Distribution The PyTorch implementation for our paper "Neural Texture Extraction and Distribution for Cont

Ren Yurui 111 Dec 10, 2022
PyTorch implementations of neural network models for keyword spotting

Honk: CNNs for Keyword Spotting Honk is a PyTorch reimplementation of Google's TensorFlow convolutional neural networks for keyword spotting, which ac

Castorini 475 Dec 15, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022