As-ViT: Auto-scaling Vision Transformers without Training

Overview

As-ViT: Auto-scaling Vision Transformers without Training [PDF]

MIT licensed

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou

In ICLR 2022.

Note: We implemented topology search (sec. 3.3) and scaling (sec. 3.4) in this code base in PyTorch. Our training code is based on Tensorflow and Keras on TPU, which will be released soon.

Overview

We present As-ViT, a framework that unifies the automatic architecture design and scaling for ViT (vision transformer), in a training-free strategy.

Highlights:

  • Trainig-free ViT Architecture Design: we design a "seed" ViT topology by leveraging a training-free search process. This extremely fast search is fulfilled by our comprehensive study of ViT's network complexity (length distorsion), yielding a strong Kendall-tau correlation with ground-truth accuracies.
  • Trainig-free ViT Architecture Scaling: starting from the "seed" topology, we automate the scaling rule for ViTs by growing widths/depths to different ViT layers. This will generate a series of architectures with different numbers of parameters in a single run.
  • Efficient ViT Training via Progressive Tokenization: we observe that ViTs can tolerate coarse tokenization in early training stages, and further propose to train ViTs faster and cheaper with a progressive tokenization strategy.

teaser
Left: Length Distortion shows a strong correlation with ViT's accuracy. Middle: Auto scaling rule of As-ViT. Right: Progressive re-tokenization for efficient ViT training.

Prerequisites

  • Ubuntu 18.04
  • Python 3.6.9
  • CUDA 11.0 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.6

This repository has been tested on V100 GPU. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/VITA-Grou/AsViT.git
cd AsViT
  • Install dependencies:
pip install -r requirements.txt

1. Seed As-ViT Topology Search

CUDA_VISIBLE_DEVICES=0 python ./search/reinforce.py --save_dir ./output/REINFORCE-imagenet --data_path /path/to/imagenet

This job will return you a seed topology. For example, our search seed topology is 8,2,3|4,1,2|4,1,4|4,1,6|32, which can be explained as below:

Stage1 Stage2 Stage3 Stage4 Head
Kernel K1 Split S1 Expansion E1 Kernel K2 Split S2 Expansion E2 Kernel K3 Split S3 Expansion E3 Kernel K4 Split S4 Expansion E4
8 2 3 4 1 2 4 1 4 4 1 6 32

2. Scaling

CUDA_VISIBLE_DEVICES=0 python ./search/grow.py --save_dir ./output/GROW-imagenet \
--arch "[arch]" --data_path /path/to/imagenet

Here [arch] is the seed topology (output from step 1 above). This job will return you a series of topologies. For example, our largest topology (As-ViT Large) is 8,2,3,5|4,1,2,2|4,1,4,5|4,1,6,2|32,180, which can be explained as below:

Stage1 Stage2 Stage3 Stage4 Head Initial Hidden Size
Kernel K1 Split S1 Expansion E1 Layers L1 Kernel K2 Split S2 Expansion E2 Layers L2 Kernel K3 Split S3 Expansion E3 Layers L3 Kernel K4 Split S4 Expansion E4 Layers L4
8 2 3 5 4 1 2 2 4 1 4 5 4 1 6 2 32 180

3. Evaluation

Tensorflow and Keras code for training on TPU. To be released soon.

Citation

@inproceedings{chen2021asvit,
  title={Auto-scaling Vision Transformers without Training},
  author={Chen, Wuyang and Huang, Wei and Du, Xianzhi and Song, Xiaodan and Wang, Zhangyang and Zhou, Denny},
  booktitle={International Conference on Learning Representations},
  year={2022}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein arxiv:1611.02163 This repo contains an example notebo

Ben Poole 292 Dec 06, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023