[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

Overview

RetrievalFuse

Paper | Project Page | Video

RetrievalFuse: Neural 3D Scene Reconstruction with a Database
Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, Angela Dai
ICCV2021

This repository contains the code for the ICCV 2021 paper RetrievalFuse, a novel approach for 3D reconstruction from low resolution distance field grids and from point clouds.

In contrast to traditional generative learned models which encode the full generative process into a neural network and can struggle with maintaining local details at the scene level, we introduce a new method that directly leverages scene geometry from the training database.

File and Folders


Broad code structure is as follows:

File / Folder Description
config/super_resolution Super-resolution experiment configs
config/surface_reconstruction Surface reconstruction experiment configs
config/base Defaults for configurations
config/config_handler.py Config file parser
data/splits Training and validation splits for different datasets
dataset/scene.py SceneHandler class for managing access to scene data samples
dataset/patched_scene_dataset.py Pytorch dataset class for scene data
external/ChamferDistancePytorch For calculating rough chamfer distance between prediction and target while training
model/attention.py Attention, folding and unfolding modules
model/loss.py Loss functions
model/refinement.py Refinement network
model/retrieval.py Retrieval network
model/unet.py U-Net model used as a backbone in refinement network
runs/ Checkpoint and visualizations for experiments dumped here
trainer/train_retrieval.py Lightning module for training retrieval network
trainer/train_refinement.py Lightning module for training refinement network
util/arguments.py Argument parsing (additional arguments apart from those in config)
util/filesystem_logger.py For copying source code for each run in the experiment log directory
util/metrics.py Rough metrics for logging during training
util/mesh_metrics.py Final metrics on meshes
util/retrieval.py Script to dump retrievals once retrieval networks have been trained; needed for training refinement.
util/visualizations.py Utility scripts for visualizations

Further, the data/ directory has the following layout

data                    # root data directory
├── sdf_008             # low-res (8^3) distance fields
    ├── 
   
         
        ├── 
    
     
        ├── 
     
      
        ├── 
      
       
        ...
    ├── 
       
         ... ├── sdf_016 # low-res (16^3) distance fields ├── 
        
          ├── 
         
           ├── 
          
            ├── 
           
             ... ├── 
            
              ... ├── sdf_064 # high-res (64^3) distance fields ├── 
             
               ├── 
              
                ├── 
               
                 ├── 
                
                  ... ├── 
                 
                   ... ├── pc_20K # point cloud inputs ├── 
                  
                    ├── 
                   
                     ├── 
                    
                      ├── 
                     
                       ... ├── 
                      
                        ... ├── splits # train/val splits ├── size # data needed by SceneHandler class (autocreated on first run) ├── occupancy # data needed by SceneHandler class (autocreated on first run) 
                      
                     
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   

Dependencies


Install the dependencies using pip ```bash pip install -r requirements.txt ``` Be sure that you pull the `ChamferDistancePytorch` submodule in `external`.

Data Preparation


For ShapeNetV2 and Matterport, get the appropriate meshes from the datasets. For 3DFRONT get the 3DFUTURE meshes and 3DFRONT scripts. For getting 3DFRONT meshes use our fork of 3D-FRONT-ToolBox to create room meshes.

Once you have the meshes, use our fork of sdf-gen to create distance field low-res inputs and high-res targets. For creating point cloud inputs simply use trimesh.sample.sample_surface (check util/misc/sample_scene_point_clouds). Place the processed data in appropriate directories:

  • data/sdf_008/ or data/sdf_016/ for low-res inputs

  • data/pc_20K/ for point clouds inputs

  • data/sdf_064/ for targets

Training the Retrieval Network


To train retrieval networks use the following command:

python trainer/train_retrieval.py --config config/<config> --val_check_interval 5 --experiment retrieval --wandb_main --sanity_steps 1

We provide some sample configurations for retrieval.

For super-resolution, e.g.

  • config/super_resolution/ShapeNetV2/retrieval_008_064.yaml
  • config/super_resolution/3DFront/retrieval_008_064.yaml
  • config/super_resolution/Matterport3D/retrieval_016_064.yaml

For surface-reconstruction, e.g.

  • config/surface_reconstruction/ShapeNetV2/retrieval_128_064.yaml
  • config/surface_reconstruction/3DFront/retrieval_128_064.yaml
  • config/surface_reconstruction/Matterport3D/retrieval_128_064.yaml

Once trained, create the retrievals for train/validation set using the following commands:

python util/retrieval.py  --mode map --retrieval_ckpt <trained_retrieval_ckpt> --config <retrieval_config>
python util/retrieval.py --mode compose --retrieval_ckpt <trained_retrieval_ckpt> --config <retrieval_config> 

Training the Refinement Network


Use the following command to train the refinement network

python trainer/train_refinement.py --config <config> --val_check_interval 5 --experiment refinement --sanity_steps 1 --wandb_main --retrieval_ckpt <retrieval_ckpt>

Again, sample configurations for refinement are provided in the config directory.

For super-resolution, e.g.

  • config/super_resolution/ShapeNetV2/refinement_008_064.yaml
  • config/super_resolution/3DFront/refinement_008_064.yaml
  • config/super_resolution/Matterport3D/refinement_016_064.yaml

For surface-reconstruction, e.g.

  • config/surface_reconstruction/ShapeNetV2/refinement_128_064.yaml
  • config/surface_reconstruction/3DFront/refinement_128_064.yaml
  • config/surface_reconstruction/Matterport3D/refinement_128_064.yaml

Visualizations and Logs


Visualizations and checkpoints are dumped in the `runs/` directory. Logs are uploaded to the user's [Weights&Biases](https://wandb.ai/site) dashboard.

Citation


If you find our work useful in your research, please consider citing:
@inproceedings{siddiqui2021retrievalfuse,
  title = {RetrievalFuse: Neural 3D Scene Reconstruction with a Database},
  author = {Siddiqui, Yawar and Thies, Justus and Ma, Fangchang and Shan, Qi and Nie{\ss}ner, Matthias and Dai, Angela},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

License


The code from this repository is released under the MIT license.
Owner
Yawar Nihal Siddiqui
Yawar Nihal Siddiqui
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Namish Khanna 40 Oct 11, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022