[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

Overview

RetrievalFuse

Paper | Project Page | Video

RetrievalFuse: Neural 3D Scene Reconstruction with a Database
Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan, Matthias Nießner, Angela Dai
ICCV2021

This repository contains the code for the ICCV 2021 paper RetrievalFuse, a novel approach for 3D reconstruction from low resolution distance field grids and from point clouds.

In contrast to traditional generative learned models which encode the full generative process into a neural network and can struggle with maintaining local details at the scene level, we introduce a new method that directly leverages scene geometry from the training database.

File and Folders


Broad code structure is as follows:

File / Folder Description
config/super_resolution Super-resolution experiment configs
config/surface_reconstruction Surface reconstruction experiment configs
config/base Defaults for configurations
config/config_handler.py Config file parser
data/splits Training and validation splits for different datasets
dataset/scene.py SceneHandler class for managing access to scene data samples
dataset/patched_scene_dataset.py Pytorch dataset class for scene data
external/ChamferDistancePytorch For calculating rough chamfer distance between prediction and target while training
model/attention.py Attention, folding and unfolding modules
model/loss.py Loss functions
model/refinement.py Refinement network
model/retrieval.py Retrieval network
model/unet.py U-Net model used as a backbone in refinement network
runs/ Checkpoint and visualizations for experiments dumped here
trainer/train_retrieval.py Lightning module for training retrieval network
trainer/train_refinement.py Lightning module for training refinement network
util/arguments.py Argument parsing (additional arguments apart from those in config)
util/filesystem_logger.py For copying source code for each run in the experiment log directory
util/metrics.py Rough metrics for logging during training
util/mesh_metrics.py Final metrics on meshes
util/retrieval.py Script to dump retrievals once retrieval networks have been trained; needed for training refinement.
util/visualizations.py Utility scripts for visualizations

Further, the data/ directory has the following layout

data                    # root data directory
├── sdf_008             # low-res (8^3) distance fields
    ├── 
   
         
        ├── 
    
     
        ├── 
     
      
        ├── 
      
       
        ...
    ├── 
       
         ... ├── sdf_016 # low-res (16^3) distance fields ├── 
        
          ├── 
         
           ├── 
          
            ├── 
           
             ... ├── 
            
              ... ├── sdf_064 # high-res (64^3) distance fields ├── 
             
               ├── 
              
                ├── 
               
                 ├── 
                
                  ... ├── 
                 
                   ... ├── pc_20K # point cloud inputs ├── 
                  
                    ├── 
                   
                     ├── 
                    
                      ├── 
                     
                       ... ├── 
                      
                        ... ├── splits # train/val splits ├── size # data needed by SceneHandler class (autocreated on first run) ├── occupancy # data needed by SceneHandler class (autocreated on first run) 
                      
                     
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   

Dependencies


Install the dependencies using pip ```bash pip install -r requirements.txt ``` Be sure that you pull the `ChamferDistancePytorch` submodule in `external`.

Data Preparation


For ShapeNetV2 and Matterport, get the appropriate meshes from the datasets. For 3DFRONT get the 3DFUTURE meshes and 3DFRONT scripts. For getting 3DFRONT meshes use our fork of 3D-FRONT-ToolBox to create room meshes.

Once you have the meshes, use our fork of sdf-gen to create distance field low-res inputs and high-res targets. For creating point cloud inputs simply use trimesh.sample.sample_surface (check util/misc/sample_scene_point_clouds). Place the processed data in appropriate directories:

  • data/sdf_008/ or data/sdf_016/ for low-res inputs

  • data/pc_20K/ for point clouds inputs

  • data/sdf_064/ for targets

Training the Retrieval Network


To train retrieval networks use the following command:

python trainer/train_retrieval.py --config config/<config> --val_check_interval 5 --experiment retrieval --wandb_main --sanity_steps 1

We provide some sample configurations for retrieval.

For super-resolution, e.g.

  • config/super_resolution/ShapeNetV2/retrieval_008_064.yaml
  • config/super_resolution/3DFront/retrieval_008_064.yaml
  • config/super_resolution/Matterport3D/retrieval_016_064.yaml

For surface-reconstruction, e.g.

  • config/surface_reconstruction/ShapeNetV2/retrieval_128_064.yaml
  • config/surface_reconstruction/3DFront/retrieval_128_064.yaml
  • config/surface_reconstruction/Matterport3D/retrieval_128_064.yaml

Once trained, create the retrievals for train/validation set using the following commands:

python util/retrieval.py  --mode map --retrieval_ckpt <trained_retrieval_ckpt> --config <retrieval_config>
python util/retrieval.py --mode compose --retrieval_ckpt <trained_retrieval_ckpt> --config <retrieval_config> 

Training the Refinement Network


Use the following command to train the refinement network

python trainer/train_refinement.py --config <config> --val_check_interval 5 --experiment refinement --sanity_steps 1 --wandb_main --retrieval_ckpt <retrieval_ckpt>

Again, sample configurations for refinement are provided in the config directory.

For super-resolution, e.g.

  • config/super_resolution/ShapeNetV2/refinement_008_064.yaml
  • config/super_resolution/3DFront/refinement_008_064.yaml
  • config/super_resolution/Matterport3D/refinement_016_064.yaml

For surface-reconstruction, e.g.

  • config/surface_reconstruction/ShapeNetV2/refinement_128_064.yaml
  • config/surface_reconstruction/3DFront/refinement_128_064.yaml
  • config/surface_reconstruction/Matterport3D/refinement_128_064.yaml

Visualizations and Logs


Visualizations and checkpoints are dumped in the `runs/` directory. Logs are uploaded to the user's [Weights&Biases](https://wandb.ai/site) dashboard.

Citation


If you find our work useful in your research, please consider citing:
@inproceedings{siddiqui2021retrievalfuse,
  title = {RetrievalFuse: Neural 3D Scene Reconstruction with a Database},
  author = {Siddiqui, Yawar and Thies, Justus and Ma, Fangchang and Shan, Qi and Nie{\ss}ner, Matthias and Dai, Angela},
  booktitle = {Proc. International Conference on Computer Vision (ICCV)},
  month = oct,
  year = {2021},
  doi = {},
  month_numeric = {10}
}

License


The code from this repository is released under the MIT license.
Owner
Yawar Nihal Siddiqui
Yawar Nihal Siddiqui
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022