Implicit Model Specialization through DAG-based Decentralized Federated Learning

Overview

Federated Learning DAG Experiments

This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Implicit Model Specialization through DAG-based Decentralized Federated Learning"

General Usage

Since we are still using TensorFlow 1, Python <=3.7 is required.

Depending on your setup, you can obtain the old python version using a version manager such as pyenv or using a Docker container:

cd federated-learning-dag
docker run -d --name federated-learning-dag \
  -v $PWD:/workspace \
  --workdir /workspace \
  --init --shm-size 8g \
  mcr.microsoft.com/vscode/devcontainers/python:3.7-bullseye \
    tail -f /dev/null
docker exec -it federated-learning-dag bash
# Run pipenv commands in this shell

# Clean up
docker rm -f federated-learning-dag 

Then, use pipenv to set up your environment. VS Code users can use the provided devcontainer template as a base environment. Run pipenv install to download the dependencies and run the code within a pipenv shell.

There are two execution variants: A default, single-threaded one, and an extended version using the 'ray' parallelism library.

Basic usage: python -m tangle.lab --help (or python -m tangle.ray --help).

By default, all experiments_figure_[*].py use ray for parallelism. This requires lots of main memory and a shared memory option for use within Docker. VS Code devcontainer users have to add "--shm-size", "8gb" (depending on the available memory) to the runArgs in .devcontainer/devcontainer.json.

To view a DAG (sometimes called a tangle) in a web browser, run python -m http.server in the repository root and open http://localhost:8000/viewer/. Enter the name of your experiment run and adjust the round slider to see something.

Obtaining the datasets

The contents of the ./data directory can be obtained from https://data.osmhpi.de/ipfs/QmQMe1Bd8X7tqQHWqcuS17AQZUqcfRQmNRgrenJD2o8xsS/.

Reproduction of the evaluation in the paper

The experiements in the paper can be reproduced by running python scripts in the root folder of this repository. They are organized by the figures in which the respective evaluation is presented and named experiments_figure_[*].py

The results of the federated averaging runs presented in Figure 9 as baseline can be reproduced by running run_fed_avg_[fmnist,poets,cifar].py The results presented in Table 2 are generated by the scripts for DAG-IS of Figure 9 as well.

Owner
Operating Systems and Middleware Group
Operating Systems and Middleware Group
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022