Code for the paper "Adversarial Generator-Encoder Networks"

Related tags

Deep Learninggan
Overview

This repository contains code for the paper

"Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky.

Pretrained models

This is how you can access the models used to generate figures in the paper.

  1. First install dev version of pytorch 0.2 and make sure you have jupyter notebook ready.

  2. Then download the models with the script:

bash download_pretrained.sh
  1. Run jupyter notebook and go through evaluate.ipynb.

Here is an example of samples and reconstructions for imagenet, celeba and cifar10 datasets generated with evaluate.ipynb.

Celeba

Samples Reconstructions

Cifar10

Samples Reconstructions

Tiny ImageNet

Samples Reconstructions

Training

Use age.py script to train a model. Here are the most important parameters:

  • --dataset: one of [celeba, cifar10, imagenet, svhn, mnist]
  • --dataroot: for datasets included in torchvision it is a directory where everything will be downloaded to; for imagenet, celeba datasets it is a path to a directory with folders train and val inside.
  • --image_size:
  • --save_dir: path to a folder, where checkpoints will be stored
  • --nz: dimensionality of latent space
  • -- batch_size: Batch size. Default 64.
  • --netG: .py file with generator definition. Searched in models directory
  • --netE: .py file with generator definition. Searched in models directory
  • --netG_chp: path to a generator checkpoint to load from
  • --netE_chp: path to an encoder checkpoint to load from
  • --nepoch: number of epoch to run
  • --start_epoch: epoch number to start from. Useful for finetuning.
  • --e_updates: Update plan for encoder. <num steps>;KL_fake:<weight>,KL_real:<weight>,match_z:<weight>,match_x:<weight>.
  • --g_updates: Update plan for generator. <num steps>;KL_fake:<weight>,match_z:<weight>,match_x:<weight>.

And misc arguments:

  • --workers: number of dataloader workers.
  • --ngf: controlles number of channels in generator
  • --ndf: controlles number of channels in encoder
  • --beta1: parameter for ADAM optimizer
  • --cpu: do not use GPU
  • --criterion: Parametric param or non-parametric nonparam way to compute KL. Parametric fits Gaussian into data, non-parametric is based on nearest neighbors. Default: param.
  • --KL: What KL to compute: qp or pq. Default is qp.
  • --noise: sphere for uniform on sphere or gaussian. Default sphere.
  • --match_z: loss to use as reconstruction loss in latent space. L1|L2|cos. Default cos.
  • --match_x: loss to use as reconstruction loss in data space. L1|L2|cos. Default L1.
  • --drop_lr: each drop_lr epochs a learning rate is dropped.
  • --save_every: controls how often intermediate results are stored. Default 50.
  • --manual_seed: random seed. Default 123.

Here is cmd you can start with:

Celeba

Let data_root to be a directory with two folders train, val, each with the images for corresponding split.

python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --lr 0.0002 --nz 64 --batch_size 64 --netG dcgan64px --netE dcgan64px --nepoch 5 --drop_lr 5 --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '3;KL_fake:1,match_z:1000,match_x:0'

It is beneficial to finetune the model with larger batch_size and stronger matching weight then:

python age.py --dataset celeba --dataroot <data_root> --image_size 64 --save_dir <save_dir> --start_epoch 5 --lr 0.0002 --nz 64 --batch_size 256 --netG dcgan64px --netE dcgan64px --nepoch 6 --drop_lr 5   --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:15' --g_updates '3;KL_fake:1,match_z:1000,match_x:0' --netE_chp  <save_dir>/netE_epoch_5.pth --netG_chp <save_dir>/netG_epoch_5.pth

Imagenet

python age.py --dataset imagenet --dataroot /path/to/imagenet_dir/ --save_dir <save_dir> --image_size 32 --save_dir ${pdir} --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 6 --drop_lr 3  --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:2000,match_x:0' --workers 12

It can be beneficial to switch to 256 batch size after several epochs.

Cifar10

python age.py --dataset cifar10 --image_size 32 --save_dir <save_dir> --lr 0.0002 --nz 128 --netG dcgan32px --netE dcgan32px --nepoch 150 --drop_lr 40  --e_updates '1;KL_fake:1,KL_real:1,match_z:0,match_x:10' --g_updates '2;KL_fake:1,match_z:1000,match_x:0'

Tested with python 2.7.

Implementation is based on pyTorch DCGAN code.

Citation

If you found this code useful please cite our paper

@inproceedings{DBLP:conf/aaai/UlyanovVL18,
  author    = {Dmitry Ulyanov and
               Andrea Vedaldi and
               Victor S. Lempitsky},
  title     = {It Takes (Only) Two: Adversarial Generator-Encoder Networks},
  booktitle = {{AAAI}},
  publisher = {{AAAI} Press},
  year      = {2018}
}
Owner
Dmitry Ulyanov
Co-Founder at in3D, Phd @ Skoltech
Dmitry Ulyanov
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022