Noise Conditional Score Networks (NeurIPS 2019, Oral)

Overview

Generative Modeling by Estimating Gradients of the Data Distribution

This repo contains the official implementation for the NeurIPS 2019 paper Generative Modeling by Estimating Gradients of the Data Distribution,

by Yang Song and Stefano Ermon. Stanford AI Lab.

Note: The method has been greatly stabilized by the subsequent work Improved Techniques for Training Score-Based Generative Models (code) and more recently extended by Score-Based Generative Modeling through Stochastic Differential Equations (code). This codebase is therefore not recommended for new projects anymore.


We describe a new method of generative modeling based on estimating the derivative of the log density function (a.k.a., Stein score) of the data distribution. We first perturb our training data by different Gaussian noise with progressively smaller variances. Next, we estimate the score function for each perturbed data distribution, by training a shared neural network named the Noise Conditional Score Network (NCSN) using score matching. We can directly produce samples from our NSCN with annealed Langevin dynamics.

Dependencies

  • PyTorch

  • PyYAML

  • tqdm

  • pillow

  • tensorboardX

  • seaborn

Running Experiments

Project Structure

main.py is the common gateway to all experiments. Type python main.py --help to get its usage description.

usage: main.py [-h] [--runner RUNNER] [--config CONFIG] [--seed SEED]
               [--run RUN] [--doc DOC] [--comment COMMENT] [--verbose VERBOSE]
               [--test] [--resume_training] [-o IMAGE_FOLDER]

optional arguments:
  -h, --help            show this help message and exit
  --runner RUNNER       The runner to execute
  --config CONFIG       Path to the config file
  --seed SEED           Random seed
  --run RUN             Path for saving running related data.
  --doc DOC             A string for documentation purpose
  --verbose VERBOSE     Verbose level: info | debug | warning | critical
  --test                Whether to test the model
  --resume_training     Whether to resume training
  -o IMAGE_FOLDER, --image_folder IMAGE_FOLDER
                        The directory of image outputs

There are four runner classes.

  • AnnealRunner The main runner class for experiments related to NCSN and annealed Langevin dynamics.
  • BaselineRunner Compared to AnnealRunner, this one does not anneal the noise. Instead, it uses a single fixed noise variance.
  • ScoreNetRunner This is the runner class for reproducing the experiment of Figure 1 (Middle, Right)
  • ToyRunner This is the runner class for reproducing the experiment of Figure 2 and Figure 3.

Configuration files are stored in configs/. For example, the configuration file of AnnealRunner is configs/anneal.yml. Log files are commonly stored in run/logs/doc_name, and tensorboard files are in run/tensorboard/doc_name. Here doc_name is the value fed to option --doc.

Training

The usage of main.py is quite self-evident. For example, we can train an NCSN by running

python main.py --runner AnnealRunner --config anneal.yml --doc cifar10

Then the model will be trained according to the configuration files in configs/anneal.yml. The log files will be stored in run/logs/cifar10, and the tensorboard logs are in run/tensorboard/cifar10.

Sampling

Suppose the log files are stored in run/logs/cifar10. We can produce samples to folder samples by running

python main.py --runner AnnealRunner --test -o samples

Checkpoints

We provide pretrained checkpoints run.zip. Extract the file to the root folder. You should be able to produce samples like the following using this checkpoint.

Dataset Sampling procedure
MNIST MNIST
CelebA Celeba
CIFAR-10 CIFAR10

Evaluation

Please refer to Appendix B.2 of our paper for details on hyperparameters and model selection. When computing inception and FID scores, we first generate images from our model, and use the official code from OpenAI and the original code from TTUR authors to obtain the scores.

References

Large parts of the code are derived from this Github repo (the official implementation of the sliced score matching paper)

If you find the code / idea inspiring for your research, please consider citing the following

@inproceedings{song2019generative,
  title={Generative Modeling by Estimating Gradients of the Data Distribution},
  author={Song, Yang and Ermon, Stefano},
  booktitle={Advances in Neural Information Processing Systems},
  pages={11895--11907},
  year={2019}
}

and / or

@inproceedings{song2019sliced,
  author    = {Yang Song and
               Sahaj Garg and
               Jiaxin Shi and
               Stefano Ermon},
  title     = {Sliced Score Matching: {A} Scalable Approach to Density and Score
               Estimation},
  booktitle = {Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
               Intelligence, {UAI} 2019, Tel Aviv, Israel, July 22-25, 2019},
  pages     = {204},
  year      = {2019},
  url       = {http://auai.org/uai2019/proceedings/papers/204.pdf},
}
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023