CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

Overview

CharacterGAN

Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wang, Eli Shechtman, and Stefan Wermter (open with Adobe Acrobat or similar to see visualizations).

Supplementary material can be found here.

Our model can be trained on only a few images (e.g. 10) of a given character labeled with user-chosen keypoints. The resulting model can be used to animate the character on which it was trained by interpolating between its poses specified by their keypoints. We can also repose characters by simply moving the keypoints into the desired positions. To train the model all we need are few images depicting the character in diverse poses from the same viewpoint, keypoints, a file that describes how the keypoints are connected (the characters skeleton) and which keypoints lie in the same layer.

Examples

Animation: For all examples the model was trained on 8-15 images (see first row) of the given character.

Training Images 12 15 9 12 15 15 8
Animation dog_animation maddy_animation ostrich_animation man_animation robot_animation man_animation cow_animation



Frame interpolation: Example of interpolations between two poses with the start and end keypoints highlighted.

man man man man man man man man man man man man man
dog dog dog dog dog dog dog dog dog dog dog dog dog



Reposing: You can use our interactive GUI to easily repose a given character based on keypoints.

Interactive dog_gui man_gui
Gui cow_gui man_gui

Installation

  • python 3.8
  • pytorch 1.7.1
pip install -r requirements.txt

Training

Training Data

All training data for a given character should be in a single folder. We used this website to label our images but there are of course other possibilities.

The folder should contain:

  • all training images (all in the same resolution),
  • a file called keypoints.csv (containing the keypoints for each image),
  • a file called keypoints_skeleton.csv (containing skeleton information, i.e. how keypoints are connected with each other), and
  • a file called keypoints_layers.csv (containing the information about which layer each keypoint resides in).

The structure of the keypoints.csv file is (no header): keypoint_label,x_coord,y_coord,file_name. The first column describes the keypoint label (e.g. head), the next two columns give the location of the keypoint, and the final column states which training image this keypoint belongs to.

The structure of the keypoints_skeleton.csv file is (no header): keypoint,connected_keypoint,connected_keypoint,.... The first column describes which keypoint we are describing in this line, the following columns describe which keypoints are connected to that keypoint (e.g. elbow, shoulder, hand would state that the elbow keypoint should be connected to the shoulder keypoint and the hand keypoint).

The structure of the keypoints_layers.csv file is (no header): keypoint,layer. "Keypoint" is the keypoint label (same as used in the previous two files) and "layer" is an integer value desribing which layer the keypoint resides in.

See our example training data in datasets for examples of both files.

We provide two examples (produced by Zuzana Studená) for training, located in datasets. Our other examples were trained on data from Adobe Stock or from Character Animator and I currently have no license to distribute them. You can purchase the Stock data here:

  • Man: we used all images
  • Dog: we used all images
  • Ostrich: we used the first nine images
  • Cow: we used the first eight images

There are also several websites where you can download Sprite sheets for free.

Train a Model

To train a model with the default parameters from our paper run:

python train.py --gpu_ids 0 --num_keypoints 14 --dataroot datasets/Watercolor-Man --fp16 --name Watercolor-Man

Training one model should take about 60 (FP16) to 90 (FP32) minutes on an NVIDIA GeForce GTX 2080Ti. You can usually use fewer iterations for training and still achieve good results (see next section).

Training Parameters

You can adjust several parameters at train time to possibly improve your results.

  • --name to change the name of the folder in which the results are stored (default is CharacterGAN-Timestamp)
  • --niter 4000 and --niter_decay 4000 to adjust the number of training steps (niter_decayis the number of training steps during which we reduce the learning rate linearly; default is 8000 for both, but you can get good results with fewer iterations)
  • --mask True --output_nc 4 to train with a mask
  • --skeleton False to train without skeleton information
  • --bkg_color 0 to set the background color of the training images to black (default is white, only important if you train with a mask)
  • --batch_size 10 to train with a different batch size (default is 5)

The file options/keypoints.py lets you modify/add/remove keypoints for your characters.

Results

The output is saved to checkpoints/ and we log the training process with Tensorboard. To monitor the progress go to the respective folder and run

 tensorboard --logdir .

Testing

At test time you can either use the model to animate the character or use our interactive GUI to change the position of individual keypoints.

Animate Character

To animate a character (or create interpolations between two images):

python animate_example.py --gpu_ids 0 --model_path checkpoints/Watercolor-Man-.../ --img_animation_list datasets/Watercolor-Man/animation_list.txt --dataroot datasets/Watercolor-Man

--img_animation_list points to a file that lists the images that should be used for animation. The file should contain one file name per line pointing to an image in dataroot. The model then generates an animation by interpolating between the images in the given order. See datasets/Watercolor-Man/animation_list.txt for an example.

You can add --draw_kps to visualize the keypoints in the animation. You can specifiy the gif parameters by setting --num_interpolations 10 and --fps 5. num_interpolations specifies how many images are generated between two real images (from img_animation_list), fps determines the frames per second of the generated gif.

Modify Individual Keypoints

To run the interactive GUI:

python visualizer.py --gpu_ids 0 --model_path checkpoints/Watercolor-Man-.../

Set --gpu_ids -1 to run the model on a CPU. You can also scale the images during visualization, e.g. use --scale 2.

Patch-based Refinement

We use this implementation to run the patch-based refinement step on our generated images. The easiest way to do this is to merge all your training images into a single large image file and use this image file as the style and source image.

Acknowledgements

Our implementation uses code from Pix2PixHD, the TPS augmentation from DeepSIM, and the patch-based refinement code from https://ebsynth.com/ (GitHub).

We would also like to thank Zuzana Studená who produced some of the artwork used in this work.

Citation

If you found this code useful please consider citing:

@article{hinz2021character,
    author    = {Hinz, Tobias and Fisher, Matthew and Wang, Oliver and Shechtman, Eli and Wermter, Stefan},
    title     = {CharacterGAN: Few-Shot Keypoint Character Animation and Reposing},
    journal = {arXiv preprint arXiv:2102.03141},
    year      = {2021}
}
Owner
Tobias Hinz
Research Associate at University of Hamburg
Tobias Hinz
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022