Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

Related tags

Deep LearningLiMuSE
Overview

LiMuSE

Overview

Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE explores group communication on a multi-modal speaker extraction model and further compresses the model size with quantization strategy.

Model

Our proposed model is a multi-steam architecture that takes multichannel mixture, target speaker’s enrolled utterance and visual sequences of detected faces as inputs, and outputs the target speaker’s mask in time domain. The encoded audio representations of mixture are then multiplied by the generated mask to obtain the target speech. Please see the figure below for detailed model structure.

flowchart_limuse

Datasets

We evaluate our system on two-speaker speech separation and speaker extraction problems using GRID dataset. The pretrained face embedding extraction network is trained on LRW dataset and MS-Celeb-1M dataset. And we use SMS-WSJ toolkit to obtain simulated anechoic dual-channel audio mixture. We place 2 microphones at the center of the room. The distance between microphones is 7 cm.

Getting Started

Preparation

If you want to adjust configurations of the framework and the path of dataset, please modify the option/train/train.yml file.

Training

Specify the path to train.yml file and run the training command:

python train.py -opt ./option/train/train.yml

This project supports full-precision and quantization training at the same time. Note that you need to modify two values of QA_flag in train.yml file if you would like to switch between full-precision and quantization stage. QA_flag in training settings stands for weight quantization while the one in net_conf stands for activation quantization.

View tensorboardX

tensorboard --logdir ./tensorboard

Result

  • Hyperparameters of LiMuSE

    Symbol Description Value
    N Number of filters in auto-encoder 128
    L Length of the filters (in audio samples) 16
    T Temperature 5
    X Number of GC-equipped TCN blocks in each repeat 6
    Ra Number of repeats in audio block 2
    Rb Number of repeats in fusion block 1
    K Number of groups -
  • Performance of LiMuSE and TasNet under various configurations. Q stands for quantization, VIS stands for visual cue and VP stands for voiceprint cue. Model size and compression ratio are also reported.

Method K SI-SDR (dB) #Params Model Size Compression Ratio
LiMuSE 32 16.72 0.36M 0.16MB 223.75
16 18.08 0.96M 0.40MB 89.50
LiMuSE (w/o Q) 32 23.77 0.36M 1.44MB 24.86
16 24.90 0.96M 3.84MB 9.32
LiMuSE (w/o Q and VP) 32 18.60 0.19M 0.76MB 47.11
16 24.20 0.52M 2.08MB 17.21
LiMuSE (w/o Q and VIS) 32 15.68 0.22M 0.88MB 40.68
16 21.91 0.55M 2.20MB 16.27
LiMuSE (w/o Q and GC) - 23.67 8.95M 35.8MB 1
TasNet (dual-channel) - 19.94 2.48M 9.92MB -
TasNet (single-channel) - 13.15 2.48M 9.92MB -

Citations

If you find this repo helpful, please consider citing:

@inproceedings{liu2021limuse,
  title={LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION},
  author={Liu, Qinghua and Huang, Yating and Hao, Yunzhe and Xu, Jiaming and Xu, Bo},
  booktitle={arXiv:2111.04063},
  year={2021},
}
Owner
Auditory Model and Cognitive Computing Lab
Auditory Model and Cognitive Computing Laboratory @ Institute of Automation, Chinese Academy of Sciences
Auditory Model and Cognitive Computing Lab
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022