TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

Overview

[TensorFlow 2] A Simple Baseline for Bayesian Uncertainty in Deep Learning: SWA-Gaussian (SWAG)

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

Concept

Algorithm to utilize the SWAG [1].

Equation for the weight sampling from SWAG [1].

Results

The red color and the blue color represent the initial state and current state respectively.

Variable MNIST CIFAR10

Performance

MNIST

Method Accuracy Precision Recall F1-Score
Final Epoch 0.99230 0.99231 0.99222 0.99226
Best Loss 0.99350 0.99350 0.99338 0.99344
SWAG (S = 30) 0.99310 0.99305 0.99299 0.99302
SWAG (Last Momentum) 0.99340 0.99340 0.99330 0.99335

CIFAR10

Method Accuracy Precision Recall F1-Score
Final Epoch 0.73130 0.73349 0.73130 0.73147
Best Loss 0.73240 0.73205 0.73240 0.73099
SWAG (S = 30) 0.74100 0.74622 0.74100 0.74260
SWAG (Last Momentum) 0.73490 0.73888 0.73490 0.73561

Requirements

  • Python 3.7.6
  • Tensorflow 2.3.0
  • Numpy 1.18.15
  • whiteboxlayer 0.1.15

Reference

[1] Wesley Maddox et al. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning. arXiv preprint arXiv:1902.02476.

Owner
YeongHyeon Park
YeongHyeon Park
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stanยฎ is

Stan 229 Dec 29, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Code for testing convergence rates of Lipschitz learning on graphs

๐Ÿ“ˆ LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs โ€” Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. ๋†’์€ ๊ธฐ์–ด๋น„์™€ ๋‚ฎ์€ ๊ธฐ์–ด๋น„์˜ TDD 5.2 ๋„๋ฉ”์ธ ๊ณ„์ธต ํ…Œ์ŠคํŠธ๋ฅผ ์„œ๋น„์Šค ๊ณ„์ธต์œผ๋กœ ์˜ฎ๊ฒจ์•ผ ํ•˜๋Š”๊ฐ€? ๋„๋ฉ”์ธ ๊ณ„์ธต ํ…Œ์ŠคํŠธ def

minsung sim 2 Mar 04, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023