Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

Related tags

Deep Learninggraf
Overview

GRAF


This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{Schwarz2020NEURIPS,
  title = {GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis},
  author = {Schwarz, Katja and Liao, Yiyi and Niemeyer, Michael and Geiger, Andreas},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2020}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called graf using

conda env create -f environment.yml
conda activate graf

Next, for nerf-pytorch install torchsearchsorted. Note that this requires torch>=1.4.0 and CUDA >= v10.1. You can install torchsearchsorted via

cd submodules/nerf_pytorch
pip install -r requirements.txt
cd torchsearchsorted
pip install .
cd ../../../

Demo

You can now test our code via:

python eval.py configs/carla.yaml --pretrained --rotation_elevation

This script should create a folder results/carla_128_from_pretrained/eval/ where you can find generated videos varying camera pose for the Cars dataset.

Datasets

If you only want to generate images using our pretrained models you do not need to download the datasets. The datasets are only needed if you want to train a model from scratch.

Cars

To download the Cars dataset from the paper simply run

cd data
./download_carla.sh
cd ..

This creates a folder data/carla/ downloads the images as a zip file and extracts them to data/carla/. While we do not use camera poses in this project we provide them for completeness. Your can download them by running

cd data
./download_carla_poses.sh
cd ..

This downloads the camera intrinsics (single file, equal for all images) and extrinsics corresponding to each image.

Faces

Download celebA. Then replace data/celebA in configs/celebA.yaml with *PATH/TO/CELEBA*/Img/img_align_celebA.

Download celebA_hq. Then replace data/celebA_hq in configs/celebAHQ.yaml with *PATH/TO/CELEBA_HQ*.

Cats

Download the CatDataset. Run

cd data
python preprocess_cats.py PATH/TO/CATS/DATASET
cd ..

to preprocess the data and save it to data/cats. If successful this script should print: Preprocessed 9407 images.

Birds

Download CUB-200-2011 and the corresponding Segmentation Masks. Run

cd data
python preprocess_cub.py PATH/TO/CUB-200-2011 PATH/TO/SEGMENTATION/MASKS
cd ..

to preprocess the data and save it to data/cub. If successful this script should print: Preprocessed 8444 images.

Usage

When you have installed all dependencies, you are ready to run our pre-trained models for 3D-aware image synthesis.

Generate images using a pretrained model

To evaluate a pretrained model, run

python eval.py CONFIG.yaml --pretrained --fid_kid --rotation_elevation --shape_appearance

where you replace CONFIG.yaml with one of the config files in ./configs.

This script should create a folder results/EXPNAME/eval with FID and KID scores in fid_kid.csv, videos for rotation and elevation in the respective folders and an interpolation for shape and appearance, shape_appearance.png.

Note that some pretrained models are available for different image sizes which you can choose by setting data:imsize in the config file to one of the following values:

configs/carla.yaml: 
    data:imsize 64 or 128 or 256 or 512
configs/celebA.yaml:
    data:imsize 64 or 128
configs/celebAHQ.yaml:
    data:imsize 256 or 512

Train a model from scratch

To train a 3D-aware generative model from scratch run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with your config file. The easiest way is to use one of the existing config files in the ./configs directory which correspond to the experiments presented in the paper. Note that this will train the model from scratch and will not resume training for a pretrained model.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./monitoring --port 6006

where you replace OUTPUT_DIR with the respective output directory.

For available training options, please take a look at configs/default.yaml.

Evaluation of a new model

For evaluation of the models run

python eval.py CONFIG.yaml --fid_kid --rotation_elevation --shape_appearance

where you replace CONFIG.yaml with your config file.

Multi-View Consistency Check

You can evaluate the multi-view consistency of the generated images by running a Multi-View-Stereo (MVS) algorithm on the generated images. This evaluation uses COLMAP and make sure that you have COLMAP installed to run

python eval.py CONFIG.yaml --reconstruction

where you replace CONFIG.yaml with your config file. You can also evaluate our pretrained models via:

python eval.py configs/carla.yaml --pretrained --reconstruction

This script should create a folder results/EXPNAME/eval/reconstruction/ where you can find generated multi-view images in images/ and the corresponding 3D reconstructions in models/.

Further Information

GAN training

This repository uses Lars Mescheder's awesome framework for GAN training.

NeRF

We base our code for the Generator on this great Pytorch reimplementation of Neural Radiance Fields.

Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022