Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

Related tags

Deep Learninggraf
Overview

GRAF


This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis.

You can find detailed usage instructions for training your own models and using pre-trained models below.

If you find our code or paper useful, please consider citing

@inproceedings{Schwarz2020NEURIPS,
  title = {GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis},
  author = {Schwarz, Katja and Liao, Yiyi and Niemeyer, Michael and Geiger, Andreas},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = {2020}
}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called graf using

conda env create -f environment.yml
conda activate graf

Next, for nerf-pytorch install torchsearchsorted. Note that this requires torch>=1.4.0 and CUDA >= v10.1. You can install torchsearchsorted via

cd submodules/nerf_pytorch
pip install -r requirements.txt
cd torchsearchsorted
pip install .
cd ../../../

Demo

You can now test our code via:

python eval.py configs/carla.yaml --pretrained --rotation_elevation

This script should create a folder results/carla_128_from_pretrained/eval/ where you can find generated videos varying camera pose for the Cars dataset.

Datasets

If you only want to generate images using our pretrained models you do not need to download the datasets. The datasets are only needed if you want to train a model from scratch.

Cars

To download the Cars dataset from the paper simply run

cd data
./download_carla.sh
cd ..

This creates a folder data/carla/ downloads the images as a zip file and extracts them to data/carla/. While we do not use camera poses in this project we provide them for completeness. Your can download them by running

cd data
./download_carla_poses.sh
cd ..

This downloads the camera intrinsics (single file, equal for all images) and extrinsics corresponding to each image.

Faces

Download celebA. Then replace data/celebA in configs/celebA.yaml with *PATH/TO/CELEBA*/Img/img_align_celebA.

Download celebA_hq. Then replace data/celebA_hq in configs/celebAHQ.yaml with *PATH/TO/CELEBA_HQ*.

Cats

Download the CatDataset. Run

cd data
python preprocess_cats.py PATH/TO/CATS/DATASET
cd ..

to preprocess the data and save it to data/cats. If successful this script should print: Preprocessed 9407 images.

Birds

Download CUB-200-2011 and the corresponding Segmentation Masks. Run

cd data
python preprocess_cub.py PATH/TO/CUB-200-2011 PATH/TO/SEGMENTATION/MASKS
cd ..

to preprocess the data and save it to data/cub. If successful this script should print: Preprocessed 8444 images.

Usage

When you have installed all dependencies, you are ready to run our pre-trained models for 3D-aware image synthesis.

Generate images using a pretrained model

To evaluate a pretrained model, run

python eval.py CONFIG.yaml --pretrained --fid_kid --rotation_elevation --shape_appearance

where you replace CONFIG.yaml with one of the config files in ./configs.

This script should create a folder results/EXPNAME/eval with FID and KID scores in fid_kid.csv, videos for rotation and elevation in the respective folders and an interpolation for shape and appearance, shape_appearance.png.

Note that some pretrained models are available for different image sizes which you can choose by setting data:imsize in the config file to one of the following values:

configs/carla.yaml: 
    data:imsize 64 or 128 or 256 or 512
configs/celebA.yaml:
    data:imsize 64 or 128
configs/celebAHQ.yaml:
    data:imsize 256 or 512

Train a model from scratch

To train a 3D-aware generative model from scratch run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with your config file. The easiest way is to use one of the existing config files in the ./configs directory which correspond to the experiments presented in the paper. Note that this will train the model from scratch and will not resume training for a pretrained model.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./monitoring --port 6006

where you replace OUTPUT_DIR with the respective output directory.

For available training options, please take a look at configs/default.yaml.

Evaluation of a new model

For evaluation of the models run

python eval.py CONFIG.yaml --fid_kid --rotation_elevation --shape_appearance

where you replace CONFIG.yaml with your config file.

Multi-View Consistency Check

You can evaluate the multi-view consistency of the generated images by running a Multi-View-Stereo (MVS) algorithm on the generated images. This evaluation uses COLMAP and make sure that you have COLMAP installed to run

python eval.py CONFIG.yaml --reconstruction

where you replace CONFIG.yaml with your config file. You can also evaluate our pretrained models via:

python eval.py configs/carla.yaml --pretrained --reconstruction

This script should create a folder results/EXPNAME/eval/reconstruction/ where you can find generated multi-view images in images/ and the corresponding 3D reconstructions in models/.

Further Information

GAN training

This repository uses Lars Mescheder's awesome framework for GAN training.

NeRF

We base our code for the Generator on this great Pytorch reimplementation of Neural Radiance Fields.

TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022