Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

Related tags

Deep LearningS2VC
Overview

S2VC

Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In this paper, we proposed S2VC which utilizes Self-Supervised pretrained representation to provide the latent phonetic structure of the utterance from the source speaker and the spectral features of the utterance from the target speaker.

The following is the overall model architecture.

Model architecture

For the audio samples, please refer to our demo page.

Usage

You can download the pretrained model as well as the vocoder following the link under Releases section on the sidebar.

The whole project was developed using Python 3.8, torch 1.7.1, and the pretrained model, as well as the vocoder, were turned to TorchScript, so it's not guaranteed to be backward compatible. You can install the dependencies with

pip install -r requirements.txt

If you encounter any problems while installing fairseq, please refer to pytorch/fairseq for the installation instruction.

Self-Supervised representations

Wav2vec2

In our implementation, we're using Wav2Vec 2.0 Base w/o finetuning which is trained on LibriSpeech. You can download the checkpoint wav2vec_small.pt from pytorch/fairseq.

APC(Autoregressive Predictive Coding), CPC(Contrastive Predictive Coding)

These two representations are extracted using this speech toolkit S3PRL. You can check how to extract various representations from that repo.

Vocoder

The WaveRNN-based neural vocoder is from yistLin/universal-vocoder which is based on the paper, Towards achieving robust universal neural vocoding.

Voice conversion with pretrained models

You can convert an utterance from the source speaker with multiple utterances from the target speaker by preparing a conversion pairs information file in YAML format, like

# pairs_info.yaml
pair1:
    source: VCTK-Corpus/wav48/p225/p225_001.wav
    target:
        - VCTK-Corpus/wav48/p227/p227_001.wav
pair2:
    source: VCTK-Corpus/wav48/p225/p225_001.wav
    target:
        - VCTK-Corpus/wav48/p227/p227_002.wav
        - VCTK-Corpus/wav48/p227/p227_003.wav
        - VCTK-Corpus/wav48/p227/p227_004.wav

And convert multiple pairs at the same time, e.g.

python convert_batch.py \
    -w <WAV2VEC_PATH> \
    -v <VOCODER_PATH> \
    -c <CHECKPOINT_PATH> \
    -s <SOURCE_FEATURE_NAME> \
    -r <REFERENCE_FEATURE_NAME> \
    pairs_info.yaml \
    outputs # the output directory of conversion results

After the conversion, the output directory, outputs, will be containing

pair1.wav
pair1.mel.png
pair1.attn.png
pair2.wav
pair2.mel.png
pair2.attn.png

Train from scratch

Preprocessing

You can preprocess multiple corpora by passing multiple paths. But each path should be the directory that directly contains the speaker directories. And you have to specify the feature you want to extract. Currently, we support apc, cpc, wav2vec2, and timit_posteriorgram. i.e.

python3 preprocess.py
    VCTK-Corpus/wav48 \
    <SECOND_Corpus_PATH> \ # more corpus if you want
    <FEATURE_NAME> \
    <WAV2VEC_PATH> \
    processed/<FEATURE_NAME>  # the output directory of preprocessed features

After preprocessing, the output directory will be containing:

metadata.json
utterance-000x7gsj.tar
utterance-00wq7b0f.tar
utterance-01lpqlnr.tar
...

You may need to preprocess multiple times for different features. i.e.

python3 preprocess.py
    VCTK-Corpus/wav48 apc <WAV2VEC_PATH> processed/apc
python3 preprocess.py
    VCTK-Corpus/wav48 cpc <WAV2VEC_PATH> processed/cpc
    ...

Then merge the metadata of different features.

i.e.

python3 merger.py processed

Training

python train.py processed
    --save_dir ./ckpts \
    -s <SOURCE_FEATURE_NAME> \
    -r <REFERENCE_FEATURE_NAME>

You can further specify --preload for preloading all training data into RAM to boost training speed. If --comment is specified, e.g. --comment CPC-CPC, the training logs will be placed under a newly created directory like, logs/2020-02-02_12:34:56_CPC-CPC, otherwise there won't be any logging. For more details, you can refer to the usage by python train.py -h.

You might also like...
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

The PASS dataset: pretrained models and how to get the data -  PASS: Pictures without humAns for Self-Supervised Pretraining
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time. [CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Comments
  • Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl

    Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl

    Running convert_batch.py throws ValueError: Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl that originates from https://github.com/howard1337/S2VC/blob/8a6dcebc052424c41c62be0b22cb581258c5b4aa/data/feature_extract.py#L18

    File "convert_batch.py", line 61, in main
    src_feat_model = FeatureExtractor(src_feat_name, wav2vec_path, device)
    File "/deepmind/experiments/howard1337/s2vc/data/feature_extract.py", line 18, in __init__
    torch.hub.load("s3prl/s3prl:f2114342ff9e813e18a580fa41418aee9925414e", feature_name, refresh=True).eval().to(device)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 402, in load
    repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, verbose, skip_validation)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 190, in _get_cache_or_reload
    _validate_not_a_forked_repo(repo_owner, repo_name, branch)
    File "/storage/usr/conda/envs/s2vc/lib/python3.8/site-packages/torch/hub.py", line 160, in _validate_not_a_forked_repo
    raise ValueError(f'Cannot find {branch} in https://github.com/{repo_owner}/{repo_name}. '
    ValueError: Cannot find f2114342ff9e813e18a580fa41418aee9925414e in https://github.com/s3prl/s3prl. If it's a commit from a forked repo, please call hub.load() with forked repo directly.
    

    Any idea on how to solve this?

    opened by jerrymatjila 1
  • Could you provide ppg-extracting code?

    Could you provide ppg-extracting code?

    Dear author,

    In your paper, you mentioned you extracted ppg and SSL features by s3prl toolkit. However, I cannot find in s3prl on how to extract ppg. Could you provide the code or guideline on extracting ppgs? Thanks a lot!
    
    opened by hongchengzhu 0
  • What are vocoder-ckpt-*.pt?

    What are vocoder-ckpt-*.pt?

    You release the following vocoder checkpoints:

    vocoder-ckpt-apc.pt
    vocoder-ckpt-cpc.pt
    vocoder-ckpt-wav2vec2.pt
    

    What are they?

    Are they vocoders fine-tuned on the output of a particular model? I didn't see that described in the paper. Why is this needed, if the S2VC output is a mel? If it's because different models produce different mels, do you use vocoder-ckpt-cpc.pt when target model is cpc? And if so, how did you do the fine-tuning?

    opened by turian 0
  • Training of other features (apc, timit_posteriorgram etc.) do not work

    Training of other features (apc, timit_posteriorgram etc.) do not work

    I have tried training with other than the cpc feature on my prepared corpus. However, the training script fails when the loss function (train.py , line 69). I found that the size of the output vector out is hard-coded, which is inconsistent with the size of the target Mel spectrogram of other features.

    The size of some vectors of the model are:

    • apc case: Input dim: 512, Reference dim: 512, Target dim: 240
    • cpc case: Input dim: 256, Reference dim: 256, Target dim: 80

    I prepared the input feature vectors by using preprocess.py, e.g. python .\preprocess.py (my own corpus) apc .\checkpoints\wav2vec_small.pt processed/apc.

    I have modified the model by changing the size of the vectors and can run train.py now. In the model.py, __init__() of S2VC function, I replace 80 with a function argument and pass the size of Mel vector size. But I cannot determine the modification is appropriate, for I am not familiar with NLP.

    convert_batch.py with pre-trained models works well as you described in README.md.

    Other details of my situation are:

    • Windows 10, PowerShell
    • pytorch 1.7.1 + cu110
    • torchaudio 0.7.1
    • sox 1.4.1
    • tqdm 4.42.0
    • librosa 0.8.1
    opened by sage-git 0
Releases(v1.0)
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022