JDet is Object Detection Framework based on Jittor.

Related tags

Deep LearningJDet
Overview

JDet

Introduction

JDet is Object Detection Framework based on Jittor.

Install

JDet environment requirements:

  • System: Linux(e.g. Ubuntu/CentOS/Arch), macOS, or Windows Subsystem of Linux (WSL)
  • Python version >= 3.7
  • CPU compiler (require at least one of the following)
    • g++ (>=5.4.0)
    • clang (>=8.0)
  • GPU compiler (optional)
    • nvcc (>=10.0 for g++ or >=10.2 for clang)
  • GPU library: cudnn-dev (recommend tar file installation, reference link)

Step 1: Install the requirements

git clone https://github.com/li-xl/JDet
cd JDet
python -m pip install -r requirements.txt

If you have any installation problems for Jittor, please refer to Jittor

Step 2: Install JDet

cd JDet
python setup.py install

If you don't have permission for install,please add --user.

Or use PYTHONPATH You can add export PYTHONPATH=$PYTHONPATH:{you_own_path}/JDet/python into .bashrc

source .bashrc

Getting Started

Data

DOTA Dataset documents are avaliable in the dota.md

FAIR Dataset documents are avaliable in the fair.md

Config

Config documents are avaliable in the config.md

Train

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=train

Test

If you want to test the downloaded trained models, please set resume_path={you_checkpointspath} in the last line of the config file.

python tools/run_net.py --config-file=configs/s2anet_r50_fpn_1x_dota.py --task=test

Build a New Project

In this document, we will introduce how to build a new project(model) with JDet. We need to install JDet first, and build a new project by:

mkdir $PROJECT_PATH$
cd $PROJECT_PATH$
cp $JDet_PATH$/tools/run_net.py ./
mkdir configs

Then we can build and edit configs/base.py like $JDet_PATH$/configs/retinanet.py. If we need to use a new layer, we can define this layer at $PROJECT_PATH$/layers.py and import layers.py in $PROJECT_PATH$/run_net.py, then we can use this layer in config files. Then we can train/test this model by:

python run_net.py --config-file=configs/base.py --task=train
python run_net.py --config-file=configs/base.py --task=test

Models

Models Dataset Train Aug Test Aug Optim Lr schd mAP Paper Config Download
S2ANet-R50-FPN DOTA1.0 flip - SGD 1x 74.11 arxiv config model
S2ANet-R50-FPN DOTA1.0 flip+ra90+bc - SGD 1x 76.40 arxiv config model
S2ANet-R50-FPN DOTA1.0 flip+ra90+bc+ms ms SGD 1x 79.72 arxiv config model
S2ANet-R101-FPN DOTA1.0 Flip - SGD 1x 74.28 arxiv config model
Gliding-R50-FPN DOTA1.0 flip+ms ms SGD 1x 67.42 arxiv config model
Gliding-R101-FPN DOTA1.0 flip+ms+ra90+bc ms SGD 1x 69.53 arxiv config model
RetinaNet-R50-FPN DOTA1.0 - - SGD - 62.503 arxiv config model pretrained

Notice:

  1. ms: multiscale
  2. flip: random flip
  3. ra: rotate aug
  4. ra90: rotate aug with angle 90,180,270
  5. 1x : 12 epochs
  6. bc: balance category

Plan

✔️ Supported 🕒 Doing TODO

  • ✔️ S2ANet
  • ✔️ Gliding
  • ✔️ RetinaNet
  • ✔️ Faster R-CNN
  • 🕒 SSD
  • 🕒 ReDet
  • 🕒 YOLOv5
  • 🕒 R3Det
  • 🕒 Cascade R-CNN
  • 🕒 ROI Transformer
  • CSL
  • DCL
  • GWD
  • KLD
  • ...

Contact Us

Website: http://cg.cs.tsinghua.edu.cn/jittor/

Email: [email protected]

File an issue: https://github.com/Jittor/jittor/issues

QQ Group: 761222083

The Team

JDet is currently maintained by the Tsinghua CSCG Group. If you are also interested in JDet and want to improve it, Please join us!

Citation

@article{hu2020jittor,
  title={Jittor: a novel deep learning framework with meta-operators and unified graph execution},
  author={Hu, Shi-Min and Liang, Dun and Yang, Guo-Ye and Yang, Guo-Wei and Zhou, Wen-Yang},
  journal={Science China Information Sciences},
  volume={63},
  number={222103},
  pages={1--21},
  year={2020}
}

Reference

  1. Jittor
  2. Detectron2
  3. mmdetection
  4. maskrcnn_benchmark
  5. RotationDetection
  6. s2anet
  7. gliding_vertex
  8. r3det
  9. AerialDetection
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021