ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Related tags

Deep LearningShinRL
Overview

Status: Under development (expect bug fixes and huge updates)

ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

ShinRL is an open-source JAX library specialized for the evaluation of reinforcement learning (RL) algorithms from both theoretical and practical perspectives. Please take a look at the paper for details.

QuickStart

QuickStart Try ShinRL at: experiments/QuickStart.ipynb.

import gym
from shinrl import DiscreteViSolver
import matplotlib.pyplot as plt

# make an env & a config
env = gym.make("ShinPendulum-v0")
config = DiscreteViSolver.DefaultConfig(explore="eps_greedy", approx="nn", steps_per_epoch=10000)

# make mixins
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]

# (optional) arrange mixins
# mixins.insert(2, UserDefinedMixIn)

# make & run a solver
dqn_solver = DiscreteViSolver.factory(env, config, mixins)
dqn_solver.run()

# plot performance
returns = dqn_solver.scalars["Return"]
plt.plot(returns["x"], returns["y"])

# plot learned q-values  (act == 0)
q0 = dqn_solver.tb_dict["Q"][:, 0]
env.plot_S(q0, title="Learned")

# plot oracle q-values  (act == 0)
q0 = env.calc_q(dqn_solver.tb_dict["ExploitPolicy"])[:, 0]
env.plot_S(q0, title="Oracle")

# plot optimal q-values  (act == 0)
q0 = env.calc_optimal_q()[:, 0]
env.plot_S(q0, title="Optimal")

Pendulum Example

Key Modules

overview

ShinRL consists of two main modules:

  • ShinEnv: Implement relatively small MDP environments with access to the oracle quantities.
  • Solver: Solve the environments (e.g., finding the optimal policy) with specified algorithms.

🔬 ShinEnv for Oracle Analysis

  • ShinEnv provides small environments with oracle methods that can compute exact quantities:

    • calc_q computes a Q-value table containing all possible state-action pairs given a policy.
    • calc_optimal_q computes the optimal Q-value table.
    • calc_visit calculates state visitation frequency table, for a given policy.
    • calc_return is a shortcut for computing exact undiscounted returns for a given policy.
  • Some environments support continuous action space and image observation. See the following table and shinrl/envs/__init__.py for the available environments.

Environment Dicrete action Continuous action Image Observation Tuple Observation
ShinMaze ✔️ ✔️
ShinMountainCar-v0 ✔️ ✔️ ✔️ ✔️
ShinPendulum-v0 ✔️ ✔️ ✔️ ✔️
ShinCartPole-v0 ✔️ ✔️ ✔️

🏭 Flexible Solver by MixIn

MixIn

  • A "mixin" is a class which defines and implements a single feature. ShinRL's solvers are instantiated by mixing some mixins.
  • By arranging mixins, you can easily implement your own idea on the ShinRL's code base. See experiments/QuickStart.ipynb for example.
  • The following code demonstrates how different mixins turn into "value iteration" and "deep Q learning":
import gym
from shinrl import DiscreteViSolver

env = gym.make("ShinPendulum-v0")

# run value iteration (dynamic programming)
config = DiscreteViSolver.DefaultConfig(approx="tabular", explore="oracle")
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [TabularDpStepMixIn, QTargetMixIn, TbInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
vi_solver = DiscreteViSolver.factory(env, config, mixins)
vi_solver.run()

# run deep Q learning 
config = DiscreteViSolver.DefaultConfig(approx="nn", explore="eps_greedy")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

# ShinRL also provides deep RL solvers with OpenAI Gym environment supports.
env = gym.make("CartPole-v0")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TargetMixIn, NetActMixIn, NetInitMixIn, GymExploreMixIn, GymEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

Installation

git clone [email protected]:omron-sinicx/ShinRL.git
cd ShinRL
pip install -e .

Test

cd ShinRL
make test

Format

cd ShinRL
make format

Docker

cd ShinRL
docker-compose up

Citation

# Neurips DRL WS 2021 version
@inproceedings{toshinori2021shinrl,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    booktitle = {Proceedings of the NeurIPS Deep RL Workshop},
}

# Arxiv version
@article{toshinori2021shinrlArxiv,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    url = {https://arxiv.org/abs/2112.04123},
    journal={arXiv preprint arXiv:2112.04123},
}
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Mouse Brain in the Model Zoo

Deep Neural Mouse Brain Modeling This is the repository for the ongoing deep neural mouse modeling project, an attempt to characterize the representat

Colin Conwell 15 Aug 22, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022