This is official implementaion of paper "Token Shift Transformer for Video Classification".

Overview

TokShift-Transformer

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

Updates

July 11, 2021

  • Release this V1 version (the version used in paper) to public.
  • we are preparing a V2 version which include the following modifications, will release within 1 week:
  1. Directly decode video mp4 file during training/evaluation
  2. Change to adopt standarlize timm code-base.
  3. Performances are further improved than reported in paper version (average +0.5).

April 22, 2021

  • Add Train/Test guidline and Data perpariation

April 16, 2021

  • Publish TokShift Transformer for video content understanding

Model Zoo and Baselines

architecture backbone pretrain Res & Frames GFLOPs x views top1 config
ViT (Video) Base16 ImgNet21k 224 & 8 134.7 x 30 76.02 link k400_vit_8x32_224.yml
TokShift Base-16 ImgNet21k 224 & 8 134.7 x 30 77.28 link k400_tokshift_div4_8x32_base_224.yml
TokShift (MR) Base16 ImgNet21k 256 & 8 175.8 x 30 77.68 link k400_tokshift_div4_8x32_base_256.yml
TokShift (HR) Base16 ImgNet21k 384 & 8 394.7 x 30 78.14 link k400_tokshift_div4_8x32_base_384.yml
TokShift Base16 ImgNet21k 224 & 16 268.5 x 30 78.18 link k400_tokshift_div4_16x32_base_224.yml
TokShift-Large (HR) Large16 ImgNet21k 384 & 8 1397.6 x 30 79.83 link k400_tokshift_div4_8x32_large_384.yml
TokShift-Large (HR) Large16 ImgNet21k 384 & 12 2096.4 x 30 80.40 link k400_tokshift_div4_12x32_large_384.yml

Below is trainig log, we use 3 views evaluation (instead of 30 views) during validation for time-saving.

Installation

  • PyTorch >= 1.7, torchvision
  • tensorboardx

Quick Start

Train

  1. Download ImageNet-22k pretrained weights from Base16 and Large16.
  2. Prepare Kinetics-400 dataset organized in the following structure, trainValTest
k400
|_ frames331_train
|  |_ [category name 0]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |
|  |_ [category name 1]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |_ ...
|
|_ frames331_val
|  |_ [category name 0]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |
|  |_ [category name 1]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |_ ...
|
|_ trainValTest
   |_ train.txt
   |_ val.txt
  1. Using train-script (train.sh) to train k400
#!/usr/bin/env python
import os

cmd = "python -u main_ddp_shift_v3.py \
		--multiprocessing-distributed --world-size 1 --rank 0 \
		--dist-ur tcp://127.0.0.1:23677 \
		--tune_from pretrain/ViT-L_16_Img21.npz \
		--cfg config/custom/kinetics400/k400_tokshift_div4_12x32_large_384.yml"
os.system(cmd)

Test

Using test.sh (test.sh) to evaluate k400

#!/usr/bin/env python
import os
cmd = "python -u main_ddp_shift_v3.py \
        --multiprocessing-distributed --world-size 1 --rank 0 \
        --dist-ur tcp://127.0.0.1:23677 \
        --evaluate \
        --resume model_zoo/ViT-B_16_k400_dense_cls400_segs8x32_e18_lr0.1_B21_VAL224/best_vit_B8x32x224_k400.pth \
        --cfg config/custom/kinetics400/k400_vit_8x32_224.yml"
os.system(cmd)

Contributors

VideoNet is written and maintained by Dr. Hao Zhang and Dr. Yanbin Hao.

Citing

If you find TokShift-xfmr is useful in your research, please use the following BibTeX entry for citation.

@article{tokshift2021,
  title={Token Shift Transformer for Video Classification},
  author={Hao Zhang, Yanbin Hao, Chong-Wah Ngo},
  journal={ACM Multimedia 2021},
}

Acknowledgement

Thanks for the following Github projects:

Owner
VideoNet
VideoNet
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022