This is official implementaion of paper "Token Shift Transformer for Video Classification".

Overview

TokShift-Transformer

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

Updates

July 11, 2021

  • Release this V1 version (the version used in paper) to public.
  • we are preparing a V2 version which include the following modifications, will release within 1 week:
  1. Directly decode video mp4 file during training/evaluation
  2. Change to adopt standarlize timm code-base.
  3. Performances are further improved than reported in paper version (average +0.5).

April 22, 2021

  • Add Train/Test guidline and Data perpariation

April 16, 2021

  • Publish TokShift Transformer for video content understanding

Model Zoo and Baselines

architecture backbone pretrain Res & Frames GFLOPs x views top1 config
ViT (Video) Base16 ImgNet21k 224 & 8 134.7 x 30 76.02 link k400_vit_8x32_224.yml
TokShift Base-16 ImgNet21k 224 & 8 134.7 x 30 77.28 link k400_tokshift_div4_8x32_base_224.yml
TokShift (MR) Base16 ImgNet21k 256 & 8 175.8 x 30 77.68 link k400_tokshift_div4_8x32_base_256.yml
TokShift (HR) Base16 ImgNet21k 384 & 8 394.7 x 30 78.14 link k400_tokshift_div4_8x32_base_384.yml
TokShift Base16 ImgNet21k 224 & 16 268.5 x 30 78.18 link k400_tokshift_div4_16x32_base_224.yml
TokShift-Large (HR) Large16 ImgNet21k 384 & 8 1397.6 x 30 79.83 link k400_tokshift_div4_8x32_large_384.yml
TokShift-Large (HR) Large16 ImgNet21k 384 & 12 2096.4 x 30 80.40 link k400_tokshift_div4_12x32_large_384.yml

Below is trainig log, we use 3 views evaluation (instead of 30 views) during validation for time-saving.

Installation

  • PyTorch >= 1.7, torchvision
  • tensorboardx

Quick Start

Train

  1. Download ImageNet-22k pretrained weights from Base16 and Large16.
  2. Prepare Kinetics-400 dataset organized in the following structure, trainValTest
k400
|_ frames331_train
|  |_ [category name 0]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |
|  |_ [category name 1]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |_ ...
|
|_ frames331_val
|  |_ [category name 0]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |
|  |_ [category name 1]
|  |  |_ [video name 0]
|  |  |  |_ img_00001.jpg
|  |  |  |_ img_00002.jpg
|  |  |  |_ ...
|  |  |
|  |  |_ [video name 1]
|  |  |   |_ img_00001.jpg
|  |  |   |_ img_00002.jpg
|  |  |   |_ ...
|  |  |_ ...
|  |_ ...
|
|_ trainValTest
   |_ train.txt
   |_ val.txt
  1. Using train-script (train.sh) to train k400
#!/usr/bin/env python
import os

cmd = "python -u main_ddp_shift_v3.py \
		--multiprocessing-distributed --world-size 1 --rank 0 \
		--dist-ur tcp://127.0.0.1:23677 \
		--tune_from pretrain/ViT-L_16_Img21.npz \
		--cfg config/custom/kinetics400/k400_tokshift_div4_12x32_large_384.yml"
os.system(cmd)

Test

Using test.sh (test.sh) to evaluate k400

#!/usr/bin/env python
import os
cmd = "python -u main_ddp_shift_v3.py \
        --multiprocessing-distributed --world-size 1 --rank 0 \
        --dist-ur tcp://127.0.0.1:23677 \
        --evaluate \
        --resume model_zoo/ViT-B_16_k400_dense_cls400_segs8x32_e18_lr0.1_B21_VAL224/best_vit_B8x32x224_k400.pth \
        --cfg config/custom/kinetics400/k400_vit_8x32_224.yml"
os.system(cmd)

Contributors

VideoNet is written and maintained by Dr. Hao Zhang and Dr. Yanbin Hao.

Citing

If you find TokShift-xfmr is useful in your research, please use the following BibTeX entry for citation.

@article{tokshift2021,
  title={Token Shift Transformer for Video Classification},
  author={Hao Zhang, Yanbin Hao, Chong-Wah Ngo},
  journal={ACM Multimedia 2021},
}

Acknowledgement

Thanks for the following Github projects:

Owner
VideoNet
VideoNet
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
PConv-Keras - Unofficial implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions". Try at: www.fixmyphoto.ai

Partial Convolutions for Image Inpainting using Keras Keras implementation of "Image Inpainting for Irregular Holes Using Partial Convolutions", https

Mathias Gruber 871 Jan 05, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022