NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

Overview

Banner

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification uses historical data from Gloucestershire Hospitals NHS Foundation Trust to predict how long a patient will stay in hospital upon admission.

As the successful candidate from a Dragons’ Den-style project pitch, Long Stayer Risk Stratification was first picked as a pilot project for the AI (Artificial Intelligence) Skunkworks team in April 2021.

Background

Hospital long stayers, those with a length of stay (LoS) of 21 days or longer, have significantly worse medical and social outcomes than other patients. Long-stayers are often medically optimised (fit for discharge) many days before their actual discharge. Moreover, there are a complex mixture of medical, cultural and socioeconomic factors which contribute to the causes of unnecessary long stays.

This repository contains a proof-of-concept demonstrator, developed as part of a research project - a collaboration between Polygeist, Gloucestershire Hospitals NHS Foundation Trust, NHSX, and the Home Office’s Accelerated Capability Environment (ACE). The project aimed to achieve two core objectives:
firstly, to determine if an experimental artificial intelligence (AI) approach to predicting hospital long-stayers was possible; secondly, if so, to produce a proof-of-concept (PoC) risk stratification tool.

Stratification Tool

Banner

The tool displays the LTSS for a patient record, between Level 1 and 5; with 5 being the most severe risk of the patient becoming a long stayer. The tool allows exploration of various factors, and enables the user to edit those entries to produce refined or hypothetical estimates of the patient's risk.

The tool has shown good risk stratification for real data, with Level 1 consisted of 99% short stayers, and minor cases, with less than 1% of long-stayers being classified as very low risk. Moreover, 66% of all long-stayers were classified as Risk Category 4 and 5, with proportions steadily increasing through the categories. Risk Category 5 also stratified those patients with long and serious hospital stays under the long-stay threshold (serious and lengthy stays).

Documentation:

Docs Description
REST API API Endpoint descriptions and usage examples
LTSS Flask App API Package documentation for the ltss Python package and incorporated submodules
Deployment Instructions Build and run instruction for development or production deployments
WebUI Overview Description of UI components and application structure
Configuration Files Overview of provided configuration files
Production Build Configuration Files Overview of the configuration files provided for production build Docker containers
Training Description of the training process for the models used in the LTSS API

NHS AI Lab Skunkworks

The project is supported by the NHS AI Lab Skunkworks, which exists within the NHS AI Lab to support the health and care community to rapidly progress ideas from the conceptual stage to a proof of concept.

Find out more about the NHS AI Lab Skunkworks. Join our Virtual Hub to hear more about future crowdsourcing event opportunities. Get in touch with the Skunkworks team at [email protected].

Owner
NHSX
NHSX
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022