Charsiu: A transformer-based phonetic aligner

Related tags

Deep Learningcharsiu
Overview

Charsiu: A transformer-based phonetic aligner [arXiv]

Note. This is a preview version. The aligner is under active development. New functions, new languages and detailed documentation will be added soon!

Intro

Charsiu is a phonetic alignment tool, which can:

  • recognise phonemes in a given audio file
  • perform forced alignment using phone transcriptions created in the previous step or provided by the user.
  • directly predict the phone-to-audio alignment from audio (text-independent alignment)

Fun fact: Char Siu is one of the most representative dishes of Cantonese cuisine 🍲 (see wiki).

Tutorial (In progress)

You can directly run our model in the cloud via Google Colab!

  • Forced alignment: Open In Colab
  • Textless alignmnet: Open In Colab

Development plan

  • Package
Items Progress
Documentation Nov 2021
Textgrid support Nov 2021
Model compression TBD
  • Multilingual support
Language Progress
English (American)
Mandarin Chinese Nov 2021
Spanish Dec 2021
English (British) TBD
Cantonese TBD
AAVE TBD

Pretrained models

Our pretrained models are availble at the HuggingFace model hub: https://huggingface.co/charsiu.

Dependencies

pytorch
transformers
datasets
librosa
g2pe
praatio

Training

Coming soon!

Finetuning

Coming soon!

Attribution and Citation

For now, you can cite this tool as:

@article{zhu2019charsiu,
  title={Phone-to-audio alignment without text: A Semi-supervised Approach},
  author={Zhu, Jian and Zhang, Cong and Jurgens, David},
  journal={arXiv preprint arXiv:????????????????????},
  year={2021}
 }

Or

To share a direct web link: https://github.com/lingjzhu/charsiu/.

References

Transformers
s3prl
Montreal Forced Aligner

Disclaimer

This tool is a beta version and is still under active development. It may have bugs and quirks, alongside the difficulties and provisos which are described throughout the documentation. This tool is distributed under MIT liscence. Please see license for details.

By using this tool, you acknowledge:

  • That you understand that this tool does not produce perfect camera-ready data, and that all results should be hand-checked for sanity's sake, or at the very least, noise should be taken into account.

  • That you understand that this tool is a work in progress which may contain bugs. Future versions will be released, and bug fixes (and additions) will not necessarily be advertised.

  • That this tool may break with future updates of the various dependencies, and that the authors are not required to repair the package when that happens.

  • That you understand that the authors are not required or necessarily available to fix bugs which are encountered (although you're welcome to submit bug reports to Jian Zhu ([email protected]), if needed), nor to modify the tool to your needs.

  • That you will acknowledge the authors of the tool if you use, modify, fork, or re-use the code in your future work.

  • That rather than re-distributing this tool to other researchers, you will instead advise them to download the latest version from the website.

... and, most importantly:

  • That neither the authors, our collaborators, nor the the University of Michigan or any related universities on the whole, are responsible for the results obtained from the proper or improper usage of the tool, and that the tool is provided as-is, as a service to our fellow linguists.

All that said, thanks for using our tool, and we hope it works wonderfully for you!

Support or Contact

Please contact Jian Zhu ([email protected]) for technical support.
Contact Cong Zhang ([email protected]) if you would like to receive more instructions on how to use the package.

Owner
jzhu
Michigan Linguistics
jzhu
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Code for our CVPR2021 paper coordinate attention

Coordinate Attention for Efficient Mobile Network Design (preprint) This repository is a PyTorch implementation of our coordinate attention (will appe

Qibin (Andrew) Hou 726 Jan 05, 2023
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022