img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

Overview

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

License: CC BY-NC 4.0 PWC PWC

Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in silver), aligning it with even the tiniest faces, without face detection or facial landmark localization. Our estimated 3D face locations are rendered by descending distances from the camera, for coherent visualization.

Table of contents

Paper details

Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," arXiv:2012.07791, Dec., 2020

Abstract

We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, often used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.

Citation

If you use any part of our code or data, please cite our paper.

@article{albiero2020img2pose,
  title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation},
  author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal},
  journal={arXiv preprint arXiv:2012.07791},
  year={2020}
}

Installation

Install dependecies with Python 3.

pip install -r requirements.txt

Install the renderer, which is used to visualize predictions. The renderer implementation is forked from here.

cd Sim3DR
sh build_sim3dr.sh

Training

Prepare WIDER FACE dataset

First, download our annotations as instructed in Annotations.

Download WIDER FACE dataset and extract to datasets/WIDER_Face.

Then, to create the train and validation files (LMDB), run the following scripts.

python3 convert_json_list_to_lmdb.py
--json_list ./annotations/WIDER_train_annotations.txt
--dataset_path ./datasets/WIDER_Face/WIDER_train/images/
--dest ./datasets/lmdb/
-—train

This first script will generate a LMDB dataset, which contains the training images along with annotations. It will also output a pose mean and std deviation files, which will be used for training and testing.

python3 convert_json_list_to_lmdb.py 
--json_list ./annotations/WIDER_val_annotations.txt 
--dataset_path ./datasets/WIDER_Face/WIDER_val/images/ 
--dest ./datasets/lmdb

This second script will create a LMDB containing the validation images along with annotations.

Train

Once the LMDB train/val files are created, to start training simple run the script below.

CUDA_VISIBLE_DEVICES=0 python3 train.py
--pose_mean ./datasets/lmdb/WIDER_train_annotations_pose_mean.npy
--pose_stddev ./datasets/lmdb/WIDER_train_annotations_pose_stddev.npy
--workspace ./workspace/
--train_source ./datasets/lmdb/WIDER_train_annotations.lmdb
--val_source ./datasets/lmdb/WIDER_val_annotations.lmdb
--prefix trial_1
--batch_size 2
--lr_plateau
--early_stop
--random_flip
--random_crop
--max_size 1400

For now, only single GPU training is tested. Distributed training is partially implemented, PRs welcome.

Testing

To evaluate with the pretrained model, download the model from Model Zoo, and extract it to the main folder. It will create a folder called models, which contains the model weights and the pose mean and std dev that was used for training.

If evaluating with own trained model, change the pose mean and standard deviation to the ones trained with.

Visualizing trained model

To visualize a trained model on the WIDER FACE validation set run the notebook visualize_trained_model_predictions.

WIDER FACE dataset evaluation

If you haven't done already, download the WIDER FACE dataset and extract to datasets/WIDER_Face.

python3 evaluation/evaluate_wider.py 
--dataset_path datasets/WIDER_Face/WIDER_val/images/
--dataset_list datasets/WIDER_Face/wider_face_split/wider_face_val_bbx_gt.txt
--pretrained_path models/img2pose_v1.pth
--output_path results/WIDER_FACE/Val/

To check mAP and plot curves, download the eval tools and point to results/WIDER_FACE/Val.

AFLW2000-3D dataset evaluation

Download the AFLW2000-3D dataset and unzip to datasets/AFLW2000.

Run the notebook aflw_2000_3d_evaluation.

BIWI dataset evaluation

Download the BIWI dataset and unzip to datasets/BIWI.

Run the notebook biwi_evaluation.

Testing on your own images

Run the notebook test_own_images.

Output customization

For every face detected, the model outputs by default:

  • Pose: pitch, yaw, roll, horizontal translation, vertical translation, and scale
  • Projected bounding boxes: left, top, right, bottom
  • Face scores: 0 to 1

Since the projected bounding box without expansion ends at the start of the forehead, we provide a way of expanding the forehead invidually, along with default x and y expansion.

To customize the size of the projected bounding boxes, when creating the model change any of the bounding box expansion variables as shown below (a complete example can be seen at visualize_trained_model_predictions).

# how much to expand in width
bbox_x_factor = 1.1
# how much to expand in height
bbox_y_factor = 1.1
# how much to expand in the forehead
expand_forehead = 0.3

img2pose_model = img2poseModel(
    ...,    
    bbox_x_factor=bbox_x_factor,
    bbox_y_factor=bbox_y_factor,
    expand_forehead=expand_forehead,
)

Align faces

To align the detected faces, call the function bellow passing the reference points, the image with the faces to align, and the poses outputted by img2pose. The function will return a list with PIL images containing one aligned face per give pose.

from utils.pose_operations import align_faces

# load reference points
threed_points = np.load("pose_references/reference_3d_5_points_trans.npy")

aligned_faces = align_faces(threed_points, img, poses)

Resources

Model Zoo

Annotations

Data Zoo

License

Check license for license details.

Owner
Vítor Albiero
Vítor Albiero
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Rlmm blender toolkit - A set of tools to streamline level generation in UDK straight from Blender

rlmm_blender_toolkit A set of tools to streamline level generation in UDK straig

Rocket League Mapmaking 0 Jan 15, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022