img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

Overview

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

License: CC BY-NC 4.0 PWC PWC

Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in silver), aligning it with even the tiniest faces, without face detection or facial landmark localization. Our estimated 3D face locations are rendered by descending distances from the camera, for coherent visualization.

Table of contents

Paper details

Vítor Albiero, Xingyu Chen, Xi Yin, Guan Pang, Tal Hassner, "img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation," arXiv:2012.07791, Dec., 2020

Abstract

We propose real-time, six degrees of freedom (6DoF), 3D face pose estimation without face detection or landmark localization. We observe that estimating the 6DoF rigid transformation of a face is a simpler problem than facial landmark detection, often used for 3D face alignment. In addition, 6DoF offers more information than face bounding box labels. We leverage these observations to make multiple contributions: (a) We describe an easily trained, efficient, Faster R-CNN--based model which regresses 6DoF pose for all faces in the photo, without preliminary face detection. (b) We explain how pose is converted and kept consistent between the input photo and arbitrary crops created while training and evaluating our model. (c) Finally, we show how face poses can replace detection bounding box training labels. Tests on AFLW2000-3D and BIWI show that our method runs at real-time and outperforms state of the art (SotA) face pose estimators. Remarkably, our method also surpasses SotA models of comparable complexity on the WIDER FACE detection benchmark, despite not been optimized on bounding box labels.

Citation

If you use any part of our code or data, please cite our paper.

@article{albiero2020img2pose,
  title={img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation},
  author={Albiero, Vítor and Chen, Xingyu and Yin, Xi and Pang, Guan and Hassner, Tal},
  journal={arXiv preprint arXiv:2012.07791},
  year={2020}
}

Installation

Install dependecies with Python 3.

pip install -r requirements.txt

Install the renderer, which is used to visualize predictions. The renderer implementation is forked from here.

cd Sim3DR
sh build_sim3dr.sh

Training

Prepare WIDER FACE dataset

First, download our annotations as instructed in Annotations.

Download WIDER FACE dataset and extract to datasets/WIDER_Face.

Then, to create the train and validation files (LMDB), run the following scripts.

python3 convert_json_list_to_lmdb.py
--json_list ./annotations/WIDER_train_annotations.txt
--dataset_path ./datasets/WIDER_Face/WIDER_train/images/
--dest ./datasets/lmdb/
-—train

This first script will generate a LMDB dataset, which contains the training images along with annotations. It will also output a pose mean and std deviation files, which will be used for training and testing.

python3 convert_json_list_to_lmdb.py 
--json_list ./annotations/WIDER_val_annotations.txt 
--dataset_path ./datasets/WIDER_Face/WIDER_val/images/ 
--dest ./datasets/lmdb

This second script will create a LMDB containing the validation images along with annotations.

Train

Once the LMDB train/val files are created, to start training simple run the script below.

CUDA_VISIBLE_DEVICES=0 python3 train.py
--pose_mean ./datasets/lmdb/WIDER_train_annotations_pose_mean.npy
--pose_stddev ./datasets/lmdb/WIDER_train_annotations_pose_stddev.npy
--workspace ./workspace/
--train_source ./datasets/lmdb/WIDER_train_annotations.lmdb
--val_source ./datasets/lmdb/WIDER_val_annotations.lmdb
--prefix trial_1
--batch_size 2
--lr_plateau
--early_stop
--random_flip
--random_crop
--max_size 1400

For now, only single GPU training is tested. Distributed training is partially implemented, PRs welcome.

Testing

To evaluate with the pretrained model, download the model from Model Zoo, and extract it to the main folder. It will create a folder called models, which contains the model weights and the pose mean and std dev that was used for training.

If evaluating with own trained model, change the pose mean and standard deviation to the ones trained with.

Visualizing trained model

To visualize a trained model on the WIDER FACE validation set run the notebook visualize_trained_model_predictions.

WIDER FACE dataset evaluation

If you haven't done already, download the WIDER FACE dataset and extract to datasets/WIDER_Face.

python3 evaluation/evaluate_wider.py 
--dataset_path datasets/WIDER_Face/WIDER_val/images/
--dataset_list datasets/WIDER_Face/wider_face_split/wider_face_val_bbx_gt.txt
--pretrained_path models/img2pose_v1.pth
--output_path results/WIDER_FACE/Val/

To check mAP and plot curves, download the eval tools and point to results/WIDER_FACE/Val.

AFLW2000-3D dataset evaluation

Download the AFLW2000-3D dataset and unzip to datasets/AFLW2000.

Run the notebook aflw_2000_3d_evaluation.

BIWI dataset evaluation

Download the BIWI dataset and unzip to datasets/BIWI.

Run the notebook biwi_evaluation.

Testing on your own images

Run the notebook test_own_images.

Output customization

For every face detected, the model outputs by default:

  • Pose: pitch, yaw, roll, horizontal translation, vertical translation, and scale
  • Projected bounding boxes: left, top, right, bottom
  • Face scores: 0 to 1

Since the projected bounding box without expansion ends at the start of the forehead, we provide a way of expanding the forehead invidually, along with default x and y expansion.

To customize the size of the projected bounding boxes, when creating the model change any of the bounding box expansion variables as shown below (a complete example can be seen at visualize_trained_model_predictions).

# how much to expand in width
bbox_x_factor = 1.1
# how much to expand in height
bbox_y_factor = 1.1
# how much to expand in the forehead
expand_forehead = 0.3

img2pose_model = img2poseModel(
    ...,    
    bbox_x_factor=bbox_x_factor,
    bbox_y_factor=bbox_y_factor,
    expand_forehead=expand_forehead,
)

Align faces

To align the detected faces, call the function bellow passing the reference points, the image with the faces to align, and the poses outputted by img2pose. The function will return a list with PIL images containing one aligned face per give pose.

from utils.pose_operations import align_faces

# load reference points
threed_points = np.load("pose_references/reference_3d_5_points_trans.npy")

aligned_faces = align_faces(threed_points, img, poses)

Resources

Model Zoo

Annotations

Data Zoo

License

Check license for license details.

Owner
Vítor Albiero
Vítor Albiero
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022