Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

Overview

BBB Face Recognizer

Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

Cam frame visualization

Instalation

Install dependencies using requirements.txt

pip install -r requirements.txt

Usage

To use the project successfully, you need to follow the steps below.

1. Dataset

It is needed to build a dataset through the dataset_generator.py script.

This script builds a dataset with train and validation directories according by user labeling, using real time cam frames from reality show.

On execute will be created a directory on src folder with the following structure:

dataset
└── train
    └── label1
    └── label2
    └── label3
    └── ...
└── val
    └── label1
    └── label2
    └── label3
    └── ...

And you will be able to populate the train dataset.

If you want populate validation dataset use "-val" as first command line argument.

As the screenshot below, insert the label number that matches with shown face and repeat this process until you have enough data.

Dataset Labeling

For each label input, the .jpg image will be auto stored on respective dataset.

If you don't recognize the shown face, just leave blank input to skip.

2. Model

Now is needed to generate a model through the model_generator.py script.

Upon successful execution, the accuracy and confusion matrix of train and validation will be presented, and a directory will be created in the src folder with the following structure:

model_files
└── label_encoder.joblib
└── metrics.txt
└── model.joblib

This joblib files will be loaded by face_predictor.py to use generated model.

3. API

Lastly the API can be started.

For development purpose run the live server with commands below.

cd src
uvicorn api:app --reload

Upon successful run, access in your browser http://127.0.0.1:8000/cams to get a json response with list of cams with recognized faces, like presented below.

[
  {
    "name": "BBB 22 - Câmera 1",
    "location": "Acompanhe a Casa",
    "snapshot_link": "https://live-thumbs.video.globo.com/bbb01/snapshot/",
    "slug": "bbb-22-camera-1",
    "media_id": "244881",
    "stream_link": "https://globoplay.globo.com/bbb-22-camera-1/ao-vivo/244881/?category=bbb",
    "recognized_faces": [
      {
        "label": "arthur",
        "probability": 64.19885945991763,
        "coordinates": {
          "topLeft": [
            118,
            45
          ],
          "bottomRight": [
            240,
            199
          ]
        }
      },
      {
        "label": "eliezer",
        "probability": 39.81395352766756,
        "coordinates": {
          "topLeft": [
            380,
            53
          ],
          "bottomRight": [
            460,
            152
          ]
        }
      },
      {
        "label": "scooby",
        "probability": 37.971779438946054,
        "coordinates": {
          "topLeft": [
            195,
            83
          ],
          "bottomRight": [
            404,
            358
          ]
        }
      }
    ],
    "scrape_timestamp": "2022-03-01T22:24:41.989674",
    "frame_timestamp": "2022-03-01T22:24:42.307244"
  },
  ...
]

To see all provided routes access the documentation auto generated by FAST API with Swagger UI.

For more details access FAST API documentation.

If you want to visualize the frame and face recognition on real time, set VISUALIZATION_ENABLED to True in the api.py file (use only for development), for each cam frame will be apresented like the first screenshot.

TO DO

  • cam_scraper.py: upgrade scrape_cam_frame() to get a high definition cam frame.
  • api.py: return cam list by label based on probability
  • api.py: use a database to store historical data
  • face_predictor.py: predict emotions
Owner
Rafael Azevedo
Computer Engineering student at State University of Feira de Santana. Software developer at Globo.
Rafael Azevedo
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
GUI for TOAD-GAN, a PCG-ML algorithm for Token-based Super Mario Bros. Levels.

If you are using this code in your own project, please cite our paper: @inproceedings{awiszus2020toadgan, title={TOAD-GAN: Coherent Style Level Gene

Maren A. 13 Dec 14, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022