Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Related tags

Deep Learningcivsim
Overview

Civsim

Introduction

Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages:

perlin_noise==1.7
termcolor==1.1.0

Features

Currently civsim supports the following features:

  • Terrain generation using Perlin noise (including biomes)
  • Civilisation generation with different priorities and favoured terrain etc
  • Civilisation growth, expansion, stabilisation, destabilisation, collapse, and death
  • Successor states and breakaway states

Todo

  • Diplomacy between nations
  • Possibly some sort of ruler system to see national priorities change over time
  • Playing as a civ?
  • Expanding over water (Independent agents?)

Demo image

Comments
  • Civsim reworked

    Civsim reworked

    Modularized the game to be easier to expand and maintain Fixed bugs Added scsm for versioning Added setup.py with scripts to launch the game

    Changes:

    • Deleted unused conditions from .gitignore
    • Restructured folders as follow:
      • civsim main file removed to create a project structure oriented folder( civsim is the name of the project):
        • setup.py: inits game, loads config file and starts game_master instance)
        • game_master: controls world generation, civilization generation, game loop and display
        • scmversion: for automatic versioning (not finished configuring yet)
        • version: it takes the version from scmversion which is automatically generated when you run setup and install the project
        • config: game configuration parameters, logo, log url (in the future I plan to create a configuration class)
        • module civ:
          • civ: class with the class method born_civ, class variables civ_ptr (pointer) and the instance methods actions (previous name execute), registry(previous name update (reasoning kingdom do an annual registry so it's kinda a better name looking into what update does)) expand, collapse, disslove. Renamed symbol to emblem as kingdom, countries have emblems
          • constants
          • utils: scan method was not necessary anymore (scan functionality without delete was never used as you can check if something is inside a list directly so I renamed it to sweep the land and not it is only used for delete), updated findciv and renamed to find_civ
        • module world:
          • world: class with all the world and civilization grid stuff
          • constants
          • utils: messy_noice method
        • third rpgtools library was moved here and the .gitmodule command updated to point here
        • scripts
          • version: returns game version
          • run: runs the game (it support parameters like --debug, --seed and --age (--seed and --age are a proof of concept yet, looking into expanding debug and adding a profiler to measure times))
          • utils: argument parser class for commands
    • In order to install the game you only need to clone the repository and in the root folder GitHub\civsim just use the command pip install -e . . the game will proceed to install the directory package and submodules and all the needed third party libraries from the requirements.txt file. If the game is already installed it will uninstall the old version first and update dependencies if any. It is recommended to install the game inside a virtual env with the commands $python3 -m venv . $ . bin/activate or Scripts\activate.bat(window). This approach allows to use effectively absolute imports and it allows to upload civsim to pip in the future. Finally run the game with civsim-run.
    • Renamed readme.md to README.md following conventions (LICENSE and CONTRIBUTION are missing btw I can create an issue requesting that later)
    • Added game_master class which instantiate world and civilisation class, saving the instances into dictionaries, after seeding the first civilisations it continues with the while loop game until year is equal to age.
    • Improved player initialization concept with cpu=True variable by default
    • Images moved to docs so all the project information is together. CHANGELOG.md added (there is a program which creates automatic changelogs but I need to tune in yet)
    • Changes on civ class:
      • make_civ renamed to born_civ
      • renamed civletter to civ emblems
      • Fixed bugs on collapse, expand and dissolve methods (I can explain this in further details tomorrow) but random.choice was replaced by sample to avoid taking the same tile in the foor loop and there was inconsistencies with dead civilisations (collapse takes all the territories of a civilization but dissolve method was not called until the next iteration), finally civilisation was trying to be created (collapse and dissolve) but failing because no more civ emblems were available (for example if only emblems ZX are availables and civ A collapses with 5 territories and the 5 of them try to create a civ only the 3 first can do it, this could creates phantom expand method calls crashing the game)
    • Added reason why civ is collapsing for a nature disaster (placeholder I plan to expand it to a weather class and checking the biome before hand to avoid drought on snow biomes unless we have global warming ofc)
    • Optimized _priorities array generation: (in general two for loops should be avoided complexity O(n2) but same times is not possible) for priority array I could improve the performance using only one loop and a bit of magic

    This is a first draft I didn't have time to polish all the methods and optimize then but I tested the two game modes and I believe no bugs were left, the game was tested 20 or 30 times. Logs over all the game were improved to be more helpful and some try catch added for debugging. BTW I recommend using ipdb; ipdb.set_trace() for execution time debugging you just need to install it with pip.

    There seems to be lot of changes but mostly the code it the same just structured to be project friendly, added setup so people can just use pip install, optimizations and bugs related with the class oriented approach or legacy bugs. The project folder update was the most important thing to do as the project would quickly grows unmanageable without it and the class oriented concept is desired for games.

    I have a trello with ideas I can share with you, I think you have plenty of good ideas with they way you are developing the game, can't wait to see what you do with language. One of the first thing I would like to do is optimizing probably adding numpy, adding automatic testing, improve debug mode, finish automatic versioning, update README.md

    Name for all the method classes can be discussed if you prefer one over another

    I added your last changes to the civilisation class (language and name) but I disabled them (commented) because I got an error OSError: [E050] Can't find model 'en_core_web_sm'. It doesn't seem to be a Python package or a valid path to a data directory. in the file github\civsim\civsim\third\rpgtools\subject_verb_object_extract.py maybe you can point out to me if this is a bug or I did something wrong.

    Sorry for the long post feel free to check all the files and discuss doubts or improvements!

    opened by kafkaphoenix 6
  • Add a Makefile for convienience

    Add a Makefile for convienience

    Changes:

    Add Makefile

    • Easier to interact with project

    Modify Readme

    • Include instructions for using Makefile
    • Edit list of dependecies

    Add .gitignore

    • Force git to ignore virtual environment and unwanted python files
    opened by ghost 4
  • Restructured folder project and fixed imports

    Restructured folder project and fixed imports

    Restructured project to git standard imports should load only the method they are using powerbase -> base_power added missing license, contributing and changelog files Added constants for COMMONS_WORLD_PATH, LANG_STRUCT_PATH Simplified planet init logic

    opened by kafkaphoenix 1
  • Bug fixes, optimization and miscellanea

    Bug fixes, optimization and miscellanea

    • Added rpgtools to git ignore
    • Added spacy requirement to requirements.txt
    • Removed rpgtools.py as civsim.py is using the submodule now
    • Added ignore=dirty to .gitsubmodule to avoid submodule noise
    • Removed unused gitignore options
    • Optimized civilisation priorities generation
    • Moved in the update method scan method inside if territory check to avoid unnecessary calls
    • Added :.2f in the execute method for strings power, technology level and instability to avoid lot of decimals
    • make_civ now returns the instance
    • Fixed bug: collapse and dissolve methods were creating civilisations in the same spot overwriting previous one (choice(can repeat) > sample (can't repeat))
    • Fixed bug: dissolve was creating civilisations and expanding at the same time but sometimes it would crash when calling expand as the civ could not be created (max civ limit)
    • Fixed bug: all civ created by dissolve method will expand at the end to avoid one civ expanding over other candidate before being created
    opened by kafkaphoenix 1
  • Improvements

    Improvements

    Hi I think you should move civilization and world to their own classes using a "manager" class to store the instances and execute the actions you are currently doing in the main method, that way it would be easier to modularize the code and improve readability. I can help with that if you are interested. Cheers

    opened by kafkaphoenix 1
Releases(v0.8)
  • v0.8(May 24, 2021)

    Civilisations, settlements, history, and most of the modelling behaviour have been completed. Any further improvements will be strictly to improve the fidelity of the simulation (for example: sea-based expansion, diplomacy) rather than to improve the base output of the simulation itself.

    Source code(tar.gz)
    Source code(zip)
  • v0.1(May 9, 2021)

Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023