A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

Overview

ffcv ImageNet Training

A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get...

  • ...high accuracies on ImageNet
  • ...with as many lines of code as the PyTorch ImageNet example
  • ...in 1/10th the time.

Results

Train models more efficiently, either with 8 GPUs in parallel or by training 8 ResNet-18's at once.

See benchmark setup here: https://docs.ffcv.io/benchmarks.html.

Citation

If you use this setup in your research, cite:

@misc{leclerc2022ffcv,
    author = {Guillaume Leclerc and Andrew Ilyas and Logan Engstrom and Sung Min Park and Hadi Salman and Aleksander Madry},
    title = {ffcv},
    year = {2022},
    howpublished = {\url{https://github.com/libffcv/ffcv/}},
    note = {commit xxxxxxx}
}

Configurations

The configuration files corresponding to the above results are:

Link to Config top_1 top_5 # Epochs Time (mins) Architecture Setup
Link 0.784 0.941 88 77.2 ResNet-50 8 x A100
Link 0.780 0.937 56 49.4 ResNet-50 8 x A100
Link 0.772 0.932 40 35.6 ResNet-50 8 x A100
Link 0.766 0.927 32 28.7 ResNet-50 8 x A100
Link 0.756 0.921 24 21.7 ResNet-50 8 x A100
Link 0.738 0.908 16 14.9 ResNet-50 8 x A100
Link 0.724 0.903 88 187.3 ResNet-18 1 x A100
Link 0.713 0.899 56 119.4 ResNet-18 1 x A100
Link 0.706 0.894 40 85.5 ResNet-18 1 x A100
Link 0.700 0.889 32 68.9 ResNet-18 1 x A100
Link 0.688 0.881 24 51.6 ResNet-18 1 x A100
Link 0.669 0.868 16 35.0 ResNet-18 1 x A100

Training Models

First pip install the requirements file in this directory:

pip install -r requirements.txt

Then, generate an ImageNet dataset; make the dataset used for the results above with the following command (IMAGENET_DIR should point to a PyTorch style ImageNet dataset:

# Required environmental variables for the script:
export IMAGENET_DIR=/path/to/pytorch/format/imagenet/directory/
export WRITE_DIR=/your/path/here/

# Starting in the root of the Git repo:
cd examples;

# Serialize images with:
# - 500px side length maximum
# - 50% JPEG encoded, 90% raw pixel values
# - quality=90 JPEGs
./write_dataset.sh 500 0.50 90

Then, choose a configuration from the configuration table. With the config file path in hand, train as follows:

# 8 GPU training (use only 1 for ResNet-18 training)
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

# Set the visible GPUs according to the `world_size` configuration parameter
# Modify `data.in_memory` and `data.num_workers` based on your machine
python train_imagenet.py --config-file rn50_configs/<your config file>.yaml \
    --data.train_dataset=/path/to/train/dataset.ffcv \
    --data.val_dataset=/path/to/val/dataset.ffcv \
    --data.num_workers=12 --data.in_memory=1 \
    --logging.folder=/your/path/here

Adjust the configuration by either changing the passed YAML file or by specifying arguments via fastargs (i.e. how the dataset paths were passed above).

Training Details

System setup. We trained on p4.24xlarge ec2 instances (8 A100s).

Dataset setup. Generally larger side length will aid in accuracy but decrease throughput:

  • ResNet-50 training: 50% JPEG 500px side length
  • ResNet-18 training: 10% JPEG 400px side length

Algorithmic details. We use a standard ImageNet training pipeline (à la the PyTorch ImageNet example) with only the following differences/highlights:

  • SGD optimizer with momentum and weight decay on all non-batchnorm parameters
  • Test-time augmentation over left/right flips
  • Progressive resizing from 160px to 192px: 160px training until 75% of the way through training (by epochs), then 192px until the end of training.
  • Validation set sizing according to "Fixing the train-test resolution discrepancy": 224px at test time.
  • Label smoothing
  • Cyclic learning rate schedule

Refer to the code and configuration files for a more exact specification. To obtain configurations we first gridded for hyperparameters at a 30 epoch schedule. Fixing these parameters, we then varied only the number of epochs (stretching the learning rate schedule across the number of epochs as motivated by Budgeted Training) and plotted the results above.

FAQ

Why is the first epoch slow?

The first epoch can be slow for the first epoch if the dataset hasn't been cached in memory yet.

What if I can't fit my dataset in memory?

See this guide here.

Other questions

Please open up a GitHub discussion for non-bug related questions; if you find a bug please report it on GitHub issues.

Owner
FFCV
FFCV
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022