Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Overview

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

teaser

Introduction

This is the official repository for the PyTorch implementation of "Canonical Capsules: Unsupervised Capsules in Canonical Pose" by Weiwei Sun*, Andrea Tagliasacchi*, Boyang Deng, Sara Sabour, Soroosh Yazdani, Geoffrey Hinton, Kwang Moo Yi.

Download links

Citation

⚠️ If you use this source core or data in your research (in any shape or format), we require you to cite our paper as:

@conference{sun2020canonical,
   title={Canonical Capsules: Unsupervised Capsules in Canonical Pose},
   author={Weiwei Sun and Andrea Tagliasacchi and Boyang Deng and 
           Sara Sabour and Soroosh Yazdani and Geoffrey Hinton and
           Kwang Moo Yi},
   booktitle={Neural Information Processing Systems},
   year={2021}
}

Requirements

Please install dependencies with the provided environment.yml:

conda env create -f environment.yml

Datasets

  • We use the ShapeNet dataset as in AtlasNetV2: download the data from AtlasNetV2's official repo and convert the downloaded data into h5 files with the provided script (i.e., data_utils/ShapeNetLoader.py).

  • For faster experimentation, please use our 2D planes dataset, which we generated from ShapeNet (please cite both our paper, as well as ShapeNet if you use this dataset).

Training/testing (2D)

To train the model on 2D planes (training of network takes only 50 epochs, and one epoch takes approximately 2.5 minutes on an NVIDIA GTX 1080 Ti):

./main.py --log_dir=plane_dim2 --indim=2 --scheduler=5

To visualize the decompostion and reconstruction:

./main.py --save_dir=gifs_plane2d --indim=2 --scheduler=5 --mode=vis --pt_file=logs/plane_dim2/checkpoint.pth

Training/testing (3D)

To train the model on the 3D dataset:

./main.py --log_dir=plane_dim3 --indim=3 --cat_id=-1

We test the model with:

./main.py --log_dir=plane_dim3 --indim=3 --cat_id=-1 --mode=test

Note that the option cat_id indicates the category id to be used to load the corresponding h5 files (this look-up table):

id category
-1 all
0 bench
1 cabinet
2 car
3 cellphone
4 chair
5 couch
6 firearm
7 lamp
8 monitor
9 plane
10 speaker
11 table
12 watercraft

Pre-trained models (3D)

We release the 3D pretrained models for both single categy (airplanes), as well as multi-category (all 13 classes).

Classification

To use our classification script:

python classification.py --data_dir=/path/to/saved/features --feature_type=caca --method_type=svm --use_kpts
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022